Spelling suggestions: "subject:"[een] SECOND HARMONIC GENERATION"" "subject:"[enn] SECOND HARMONIC GENERATION""
11 |
Optical spectroscopy study of silicon nanocrystalsWei, Junwei 20 November 2012 (has links)
Silicon nanocrystals (NCs), especially Si NCs embedded in SiO₂, have been studied intensely for decades for their potential application in silicon photonics, especially as efficient room temperature light emitters. Despite progress in fabricating photonic devices from Si NCs, the origin of the efficient photoluminescence (PL), the electronic and microscopic structure of the nanocrystals, and the structure of the elusive NC/SiO₂ interfaces for the oxide-embedded nanocrystals, remain controversial. Optical spectroscopy provides a powerful noninvasive tool for probing the structure of the Si NCs, including the active buried NC/SiO₂ interfaces of embedded particles. In this thesis work, oxide-embedded and free-standing alkyl-passivated silicon nanocrystals, prepared by different techniques, have been studied by linear and nonlinear optical spectroscopies. Cross-polarized 2-beam second-harmonic and sum-frequency generation (XP2-SHG/SFG) has been applied spectroscopically to study oxide embedded Si NCs of different sizes (3 to 5 nm diameter) and interface chemistries. The SHG/SFG spectra of silicon nanocrystals (Si NCs) prepared by implanting Si ions uniformly into silica substrates, then annealing, are compared and contrasted to their spectroscopic ellipsometric (SE) and photoluminescence excitation (PLE) spectra. Three resonances--two close in energy to E₁ (3.4 eV) and E2 (4.27 eV) critical-point resonances of crystalline silicon (c-Si), and a broad resonance intermediate in energy between E₁ and E₂--are observed in all three types of spectra. These features are observed in conjunction with a sharp 520 cm⁻¹ Raman peak characteristic of c-Si and an a-Si tail in the Raman spectra. The appearance of bulk-like CP resonances in the parallel PLE, SE and SHG/SFG spectra from Si NCs suggests the basic electronic structure of the bulk c-Si is preserved in nano-particles as small as 3 nm in diameter, albeit with significant size-dependent modification. At the same time, the prominence of a non-bulk-like resonance intermediate in energy between E₁ and E₂ CPs in all three types of spectra demonstrates the important contribution of nano-interfaces to the electronic structure.We also applied Raman spectroscopy to study oxide-embedded and oxide-free alkyl-passivated Si NCs with diameters ranging from 3 nm to greater than 10 nm synthesized by thermal decomposition of hydrogen silsesquioxane (HSQ). While oxide matrix complicates the size-dependence of the Raman peak shift for oxide-embedded nanocrystals, the Raman peak of the free-standing alkyl-passivated Si NCs shifts monotonically with NC size. / text
|
12 |
Nonlinear optical characterization of Si/high-k dielectric interfacesCarriles Jaimes, Ramón 28 August 2008 (has links)
Not available / text
|
13 |
Second harmonic spectroscopy of silicon nanocrystalsFigliozzi, Peter Christopher, 1972- 28 August 2008 (has links)
Using a novel two-beam technique developed to greatly enhance quadrupolar contributions to the second-order nonlinear polarization, we performed a nonlinear spectroscopic study of silicon nanocrystals implanted in an SiO₂ matrix.
|
14 |
Second harmonic spectroscopy of silicon nanocrystalsFigliozzi, Peter Christopher, January 1900 (has links)
Thesis (Ph. D.)--University of Texas at Austin, 2007. / Vita. Includes bibliographical references.
|
15 |
Properties and applications of two dimensional optical spatial solitons in a quadratic nonlinear mediumFuerst, Russell Alexander 01 January 1999 (has links)
No description available.
|
16 |
Second order cascading effect in LiNbO3 waveguide devices and applicationsFang, Hui 01 July 2000 (has links)
No description available.
|
17 |
Resonance-enhanced Second Harmonic Generation from spherical microparticles in aqueous suspensionViarbitskaya, Sviatlana January 2008 (has links)
Second harmonic generation (SHG) is a nonlinear optical effect sensitive to interfaces between materials with inversion symmetry. It is used as an effective tool for detection of the adsorption of a substance to microscopic particles, cells, liposomes, emulsions and similar structures, surface analysis and characterization of microparticles. The scattered second harmonic (SH) intensity from surfaces of suspended microparticles is characterized by its complex angular distribution dependence on the shape, size, and physical and chemical properties of the molecules making up the outer layer of the particles. In particular, the overall scattered SH intensity has been predicted to have a dramatic and nontrivial dependence on the particle size. Results are reported for aqueous suspensions of polystyrene microspheres with different dye molecules adsorbed on their surfaces. They indicate that the scattered SH power has an oscillatory dependence on the particle size. It is also shown that adsorption of one of the dyes (malachite green) on polystyrene particles is strongly affected when SDS surfactants are added to the solution. For this system a rapid increase of the SH signal with increasing concentration of SDS was observed in the range of low SDS concentration. Three different theoretical models are used to analyze the observed particle size dependence of SHG. The calculated angular and particle size dependences of the SH scattered power show that the models do not agree very well between each other when the size of the particles is of the order of the fundamental light wavelength, as here. One of the models - nonlinear Mie scattering - predicts oscillatory behaviour of the scattered SH power with the particle size, but fails to reproduce the position of the maxima and minima of the experimentally observed oscillations. The obtained results on the size dependence of the SH can be used in all applications to increase the count rate by choosing particles of the size for which the SH efficiency was found to the highest. A new effect of cooperative malachite green and SDS interaction at the polystyrene surface can be employed, for example, in the areas of microbiology or biotechnology, where adsorption macromolecules, surfactants and dyes to polystyrene microparticles is widely used.
|
18 |
Poling dynamics of nonlinear optical guest-host polymer systems. / 具非線性光學性質客體-主體聚合物系統的極化動力學研究 / Poling dynamics of nonlinear optical guest-host polymer systems. / Ju fei xian xing guang xue xing zhi ke ti-zhu ti ju he wu xi tong de ji hua dong li xue yan jiuJanuary 2006 (has links)
To Chi Wing = 具非線性光學性質客體-主體聚合物系統的極化動力學研究 / 杜志榮. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2006. / Includes bibliographical references (leaves 102-104). / Text in English; abstracts in English and Chinese. / by To Chi Wing = Ju fei xian xing guang xue xing zhi ke ti-zhu ti ju he wu xi tong de ji hua dong li xue yan jiu / Du Zhirong. / Table of contents / Acknowledgements --- p.ii / Abstract --- p.iii / Chinese Abstract --- p.iv / Table of Contents --- p.v / List of Figures --- p.viii / Chapter Chapter 1 --- Introduction --- p.1 / Chapter 1.1 --- Fundamental of nonlinear optics --- p.2 / Chapter 1.2 --- Centrosymmetry and even-order nonlinear susceptibilities --- p.4 / Chapter 1.3 --- Generation of second harmonic radiation --- p.5 / Chapter 1.4 --- Tensor properties of the nonlinear susceptibilities --- p.7 / Chapter 1.5 --- Relationship between macroscopic and microscopic nonlinear susceptibility for a poled polymer --- p.8 / Chapter 1.6 --- Outline of the thesis --- p.12 / Figures --- p.13 / Chapter Chapter 2 --- Poling and Relaxation of Guest-host Polymeric System --- p.15 / Chapter 2.1 --- Guest-host nonlinear optical polymeric systems --- p.15 / Chapter 2.1.1 --- Photoisomerization of Azobenzene --- p.16 / Chapter 2.1.2 --- Disperse Red-1 --- p.17 / Chapter 2.1.3 --- Poly (methyl methacrylate) --- p.18 / Chapter 2.2 --- Poling techniques --- p.19 / Chapter 2.2.1 --- Thermal Assisted Electric-field Poling --- p.19 / Chapter 2.2.2 --- Photo-assisted Electric-field poling --- p.22 / Chapter 2.2.3 --- All-Optical Poling --- p.25 / Chapter 2.3 --- Relaxation of poled nonlinear optical polymers --- p.27 / Figures --- p.31 / Chapter Chapter 3 --- Experimental Methods --- p.36 / Chapter 3.1 --- Sample Preparation --- p.36 / Chapter 3.2 --- Experimental Setup --- p.38 / Chapter 3.2.1 --- Laser system --- p.38 / Chapter 3.2.2 --- The reference arm --- p.39 / Chapter 3.2.3 --- The sample arm --- p.40 / Chapter 3.2.4 --- Data acquisition (DAQ) system --- p.41 / Chapter 3.2.5 --- Temperature control --- p.42 / Chapter 3.3 --- Poling and the erasing of thermal history --- p.43 / Chapter 3.3.1 --- All Optical Poling --- p.43 / Chapter 3.3.2 --- Eecteic Poling --- p.44 / Chapter 3.3.3 --- Erasure of thermal history --- p.45 / Figures --- p.46 / Chapter Chapter 4 --- Experimental results and discussions --- p.51 / Chapter 4.1 --- Reliability and reproducibility --- p.51 / Chapter 4.2 --- Features of different poling techniques --- p.52 / Chapter 4.2.1 --- Sub-Tg electric Poling --- p.53 / Chapter 4.2.2 --- Thermal assisted electric Poling --- p.54 / Chapter 4.2.3 --- Photo assisted electric Poling --- p.55 / Chapter 4.3 --- Relaxation of poling induced x(2) --- p.56 / Chapter 4.4 --- Effect of physical aging on the relaxation of PAP induced x{2) --- p.58 / Chapter 4.4.1 --- Origin of physical aging and its effect on relaxation --- p.58 / Chapter 4.4.2 --- Effect of aging on the relaxation of a PAP sample --- p.59 / Chapter 4.5 --- Onset studies of photo-induced free volume --- p.61 / Chapter 4.6 --- Comparative studies of TAP and PAP induced x{2) --- p.62 / Chapter 4.6.1 --- Secondary Poling --- p.63 / Chapter 4.6.1.1 --- Model for describing the temporal behavior of secondary poling --- p.65 / Chapter 4.6.1.2 --- Experimental details of the secondary poling measurement --- p.68 / Chapter 4.6.1.3 --- Results and Discussion on secondary poling of sample poled by TAP or PAP --- p.69 / Chapter 4.6.2 --- Onset of second harmonic signal during electric poling --- p.71 / Chapter 4.7 --- Charge injection studies --- p.73 / Figures --- p.77 / Chapter Chapter 5 --- Conclusion --- p.98 / References --- p.101
|
19 |
Resonance-enhanced Second Harmonic Generation from spherical microparticles in aqueous suspensionViarbitskaya, Sviatlana January 2008 (has links)
<p>Second harmonic generation (SHG) is a nonlinear optical effect sensitive to interfaces between materials with inversion symmetry. It is used as an effective tool for detection of the adsorption of a substance to microscopic particles, cells, liposomes, emulsions and similar structures, surface analysis and characterization of microparticles. The scattered second harmonic (SH) intensity from surfaces of suspended microparticles is characterized by its complex angular distribution dependence on the shape, size, and physical and chemical properties of the molecules making up the outer layer of the particles. In particular, the overall scattered SH intensity has been predicted to have a dramatic and nontrivial dependence on the particle size.</p><p>Results are reported for aqueous suspensions of polystyrene microspheres with different dye molecules adsorbed on their surfaces. They indicate that the scattered SH power has an oscillatory dependence on the particle size. It is also shown that adsorption of one of the dyes (malachite green) on polystyrene particles is strongly affected when SDS surfactants are added to the solution. For this system a rapid increase of the SH signal with increasing concentration of SDS was observed in the range of low SDS concentration.</p><p>Three different theoretical models are used to analyze the observed particle size dependence of SHG. The calculated angular and particle size dependences of the SH scattered power show that the models do not agree very well between each other when the size of the particles is of the order of the fundamental light wavelength, as here. One of the models - nonlinear Mie scattering - predicts oscillatory behaviour of the scattered SH power with the particle size, but fails to reproduce the position of the maxima and minima of the experimentally observed oscillations.</p><p>The obtained results on the size dependence of the SH can be used in all applications to increase the count rate by choosing particles of the size for which the SH efficiency was found to the highest. A new effect of cooperative malachite green and SDS interaction at the polystyrene surface can be employed, for example, in the areas of microbiology or biotechnology, where adsorption macromolecules, surfactants and dyes to polystyrene microparticles is widely used.</p>
|
20 |
Synthesis and Physicochemical Characterization of Diamond-Like Semiconductors and Intermetallic Compounds Using High Temperature Solid-State Synthesis, Polychalcogenide Flux Synthesis and the Solid-State Microwave Synthetic MethodLekse, Jonathan 09 December 2011 (has links)
Diamond-like semiconductors are interesting materials to study due to the wide variety of technologically useful properties that these materials possess. These normal valence compounds have structures that are based on that of diamond, either the cubic or hexagonal polymorph. Though there are a finite number of possible compounds, due to isovalent and isoelectronic principles, the total number of potential compounds is quite extensive. Quaternary diamond-like semiconductors provide a unique opportunity, because much of the previous research has focused on binary and ternary systems leaving quaternary systems, relatively unexplored. Additionally, quaternary diamond-like semiconductors possess a greater degree of compositional flexibility compared to binary and ternary materials, which could result in the ability to more carefully tune desired physical properties.
<br>In order to prepare the new materials, Li2ZnGeS4, Li2ZnSnS4, Li2CdGeS4, Li2CdSnS4 and Ag2MnSnS4, several synthetic methods have been employed, including high-temperature solid-state synthesis, polychalcogenide flux synthesis and solid-state microwave synthesis. The solid-state microwave synthetic method was itself studied using a number of target systems such as the ternary diamond-like semiconductor, AgInSe2. Additionally, several intermetallic compounds, such as Ag3In, AuIn2 and Bi2Pd were prepared using this procedure. Solid-state microwave synthesis is not as well known as some of the other synthetic methods that were employed in this work possibly due to a lack of understanding of the method, training and equipment. Despite these problems, the method has the potential to save time, energy and cost due to the unique nature of microwave heating. In an attempt to gain a better understanding of this synthetic method and its capabilities, the solid-state microwave synthetic method was used to prepare diamond-like semiconductors and intermetallic compounds. / Bayer School of Natural and Environmental Sciences / Chemistry and Biochemistry / PhD / Dissertation
|
Page generated in 0.0266 seconds