• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 73
  • 17
  • 6
  • 5
  • 5
  • 4
  • 2
  • Tagged with
  • 127
  • 127
  • 35
  • 35
  • 22
  • 22
  • 17
  • 15
  • 13
  • 13
  • 13
  • 13
  • 12
  • 11
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

CSA-X: Modularized Constrained Multiple Sequence Alignment

2015 October 1900 (has links)
Imposing additional constraints on multiple sequence alignment (MSA) algorithms can often produce more biologically meaningful alignments. Hence, various constrained multiple sequence alignment (CMSA) algorithms have been developed in the literature, where researchers used anchor points, regular expressions, or context-free-grammars to specify the constraints, wherein alignments produced are forced to align around segments that match the constraints. In this thesis, we propose CSA-X, a modularized program of constrained multiple sequence alignment that accepts constraints in the form of regular expressions. It uses an arbitrary underlying multiple sequence alignment program to generate alignments, and is therefore modular. The name CSA-X refers to our proposed program generally, where the letter X is substituted with the name of a (non-constrained) multiple sequence alignment algorithm which is used as underlying MSA engine in the proposed program. We compare the accuracy of our program with another constrained multiple sequence alignment program called RE-MuSiC that similarly uses regular expressions for constraints. In addition, comparisons are also made to the underlying MSA programs (without constraints). The BAliBASE 3.0 benchmark database is used to assess the performance of the proposed program CSA-X, other MSA programs, and CMSA programs considered in this study. Based on the results presented herein, CSA-X outperforms RE-MuSiC, and scores well against the underlying alignment programs. It also shows that the use of regular expression constraints, if chosen well, created from the least conserved region of the correct alignments, improves the alignment accuracy. In this study, ProbCons and T-Coffee are used as the underlying MSA programs in CSA-X, and the accuracy of the alignments are measured in terms of Q score and TC score. On average, CSA-X used with constraints identified from the least conserved regions of the correct alignments achieves results that are 17.65% more for Q score, and 23.7% more for TC score compared to RE-MuSiC. In fact, CSA-X with ProbCons (CSA-PC) achieves a higher score in over 97.9% of the cases for Q score, and over 96.4% of the cases for TC score. In addition, CSA-X with T-Coffee (CSA-TCOF) achieves a higher score in over 97.7% of the cases for Q score, and over 94.8% of the cases for TC score. Furthermore, CSA-X with regular expressions created from the least conserved regions of the correct alignments achieves higher accuracy scores compared to standalone ProbCons and T-Coffee. To measure the statistical significance of CSA-X results, the Wilcoxon rank-sum test and Wilcoxon signed-rank test are performed, and these tests show that CSA-X results for the least conserved regular expression constraint sets from the correct BAliBASE 3.0 alignments are significantly different than those from RE-MuSiC, ProbCons, and T-Coffee.
2

Gene annotation using Ab initio protein structure prediction : method development and application to major protein families /

Bonneau, Richard A. January 2001 (has links)
Thesis (Ph. D.)--University of Washington, 2001. / Vita. Includes bibliographical references (leaves 130-144).
3

MULTIPLE SEQUENCES ALIGNMENT FOR PHYLOGENETIC TREE CONSTRUCTION USING GRAPHICS PROCESSING UNITS

He, Jintai 01 January 2008 (has links)
Sequence alignment has become a routine procedure in evolutionary biology in looking for evolutionary relationships between primary sequences of DNA, RNA, and protein. Smith Waterman and Needleman Wunsch algorithms are two algorithms respectively for local alignment and global alignment. Both of them are based on dynamic programming and guarantee optimal results. They have been widely used for the past dozens of years. However, time and space requirement increase exponentially with the number of sequences increase. Here I present a novel approach to improve the performance of sequence alignment by using graphics processing unit which is capable of handling large amount of data in parallel.
4

Improving the quality of multiple sequence alignment

Lu, Yue 15 May 2009 (has links)
Multiple sequence alignment is an important bioinformatics problem, with applications in diverse types of biological analysis, such as structure prediction, phylogenetic analysis and critical sites identification. In recent years, the quality of multiple sequence alignment was improved a lot by newly developed methods, although it remains a difficult task for constructing accurate alignments, especially for divergent sequences. In this dissertation, we propose three new methods (PSAlign, ISPAlign, and NRAlign) for further improving the quality of multiple sequences alignment. In PSAlign, we propose an alternative formulation of multiple sequence alignment based on the idea of finding a multiple alignment which preserves all the pairwise alignments specified by edges of a given tree. In contrast with traditional NP-hard formulations, our preserving alignment formulation can be solved in polynomial time without using a heuristic, while still retaining very good performance when compared to traditional heuristics. In ISPAlign, by using additional hits from database search of the input sequences, a few strategies have been proposed to significantly improve alignment accuracy, including the construction of profiles from the hits while performing profile alignment, the inclusion of high scoring hits into the input sequences, the use of intermediate sequence search to link distant homologs, and the use of secondary structure information. In NRAlign, we observe that it is possible to further improve alignment accuracy by taking into account alignment of neighboring residues when aligning two residues, thus making better use of horizontal information. By modifying existing multiple alignment algorithms to make use of horizontal information, we show that this strategy is able to consistently improve over existing algorithms on all the benchmarks that are commonly used to measure alignment accuracy.
5

Salvinorin A fragment synthesis and modeling studies /

McGovern, Donna Lue, January 1900 (has links)
Thesis (Ph. D.)--Virginia Commonwealth University, 2009. / Prepared for: Dept. of Medicinal Chemistry. Title from title-page of electronic thesis. Bibliography: leaves 126-138.
6

Multiple sequence alignment augmented by expert user constraints

Jin, Lingling 13 April 2010
Sequence alignment has become one of the most common tasks in bioinformatics. Most of the existing sequence alignment methods use general scoring schemes. But these alignments are sometimes not completely relevant because they do not necessarily provide the desired information. It would be extremely difficult, if not impossible, to include any possible objective into an algorithm. Our goal is to allow a working biologist to augment a given alignment with additional information based on their knowledge and objectives.<p></p>In this thesis, we will formally define constraints and compatible constraint sets for an alignment which require some positions of the sequences to be aligned together. Using this approach, one can align some specific segments such as domains within protein sequences by inputting constraints (the positions of the segments on the sequences), and the algorithm will automatically find an optimal alignment in which the segments are aligned together.<p></p>A necessary prerequisite of calculating an alignment is that the constraints inputted be compatible with each other, and we will develop algorithms to check this condition for both pairwise and multiple sequence alignments. The algorithms are based on a depth-first search on a graph that is converted from the constraints and the alignment. We then develop algorithms to perform pairwise and multiple sequence alignments satisfying these compatible constraints.<p></p>Using straightforward dynamic programming for pairwise sequence alignment satisfying a compatible constraint set, an optimal alignment corresponds to a path going through the dynamic programming matrix, and as we are only using single-position constraints, a constraint can be represented as a point on the matrix, so a compatible constraint set is a set of points. We try to determine a new path, rather than the original path, that achieves the highest score which goes through all the compatible constraint set points. The path is a concatenation of sub-paths, so that only the scores in the sub-matrices need to be calculated. This means the time required to get the new path decreases as the number of constraints increases, and it also varies as the positions of the points change. It can be further reduced by using the information from the original alignment, which can offer a significant speed gain.<p></p>We then use exact and progressive algorithms to find multiple sequence alignments satisfying a compatible constraint set, which are extensions of pairwise sequence alignments. With exact algorithms for three sequences, where constraints are represented as lines, we discuss a method to force the optimal path to cross the constraint lines. And with progressive algorithms, we use a set of pairwise alignments satisfying compatible constraints to construct multiple sequence alignments progressively. Because they are more complex, we leave some extensions as future work.
7

Multiple sequence alignment augmented by expert user constraints

Jin, Lingling 13 April 2010 (has links)
Sequence alignment has become one of the most common tasks in bioinformatics. Most of the existing sequence alignment methods use general scoring schemes. But these alignments are sometimes not completely relevant because they do not necessarily provide the desired information. It would be extremely difficult, if not impossible, to include any possible objective into an algorithm. Our goal is to allow a working biologist to augment a given alignment with additional information based on their knowledge and objectives.<p></p>In this thesis, we will formally define constraints and compatible constraint sets for an alignment which require some positions of the sequences to be aligned together. Using this approach, one can align some specific segments such as domains within protein sequences by inputting constraints (the positions of the segments on the sequences), and the algorithm will automatically find an optimal alignment in which the segments are aligned together.<p></p>A necessary prerequisite of calculating an alignment is that the constraints inputted be compatible with each other, and we will develop algorithms to check this condition for both pairwise and multiple sequence alignments. The algorithms are based on a depth-first search on a graph that is converted from the constraints and the alignment. We then develop algorithms to perform pairwise and multiple sequence alignments satisfying these compatible constraints.<p></p>Using straightforward dynamic programming for pairwise sequence alignment satisfying a compatible constraint set, an optimal alignment corresponds to a path going through the dynamic programming matrix, and as we are only using single-position constraints, a constraint can be represented as a point on the matrix, so a compatible constraint set is a set of points. We try to determine a new path, rather than the original path, that achieves the highest score which goes through all the compatible constraint set points. The path is a concatenation of sub-paths, so that only the scores in the sub-matrices need to be calculated. This means the time required to get the new path decreases as the number of constraints increases, and it also varies as the positions of the points change. It can be further reduced by using the information from the original alignment, which can offer a significant speed gain.<p></p>We then use exact and progressive algorithms to find multiple sequence alignments satisfying a compatible constraint set, which are extensions of pairwise sequence alignments. With exact algorithms for three sequences, where constraints are represented as lines, we discuss a method to force the optimal path to cross the constraint lines. And with progressive algorithms, we use a set of pairwise alignments satisfying compatible constraints to construct multiple sequence alignments progressively. Because they are more complex, we leave some extensions as future work.
8

Multiple Sequence Alignment Using the Clustering Method

Huang, Kuen-Feng 23 August 2001 (has links)
The multiple sequence alignment (MSA) is a fundamental technique of molecular biology. Biological sequences are aligned with each other vertically in order to show the similarities and differences among them. Due to its importance, many algorithms have been proposed. With dynamic programming, finding the optimal alignment for a pair of sequences can be done in O(n2) time, where n is the length of the two strings. Unfortunately, for the general optimization problem of aligning k sequences of length n , O(nk) time is required. In this thesis, we shall first propose an efficient group alignment method to perform the alignment between two groups of sequences. Then we shall propose a clustering method to build the tree topology for merging. The clustering method is based on the concept that the two sequences having the longest distance should be split into two clusters. By our experiments, both the alignment quality and required time of our algorithm are better than those of NJ (neighbor joining) algorithm and Clustal W algorithm.
9

Iterative de Bruijn graph assemblers for second-generation sequencing reads

Peng, Yu, 彭煜 January 2012 (has links)
The recent advance of second-generation sequencing technologies has made it possible to generate a vast amount of short read sequences from a DNA (cDNA) sample. Current short read assemblers make use of the de Bruijn graph, in which each vertex is a k-mer and each edge connecting vertex u and vertex v represents u and v appearing in a read consecutively, to produce contigs. There are three major problems for de Bruijn graph assemblers: (1) branch problem, due to errors and repeats; (2) gap problem, due to low or uneven sequencing depth; and (3) error problem, due to sequencing errors. A proper choice of k value is a crucial tradeoff in de Bruijn graph assemblers: a low k value leads to fewer gaps but more branches; a high k value leads to fewer branches but more gaps. In this thesis, I first analyze the fundamental genome assembly problem and then propose an iterative de Bruijn graph assembler (IDBA), which iterates from low to high k values, to construct a de Bruijn graph with fewer branches and fewer gaps than any other de Bruijn graph assembler using a fixed k value. Then, the second-generation sequencing data from metagenomic, single-cell and transcriptome samples is investigated. IDBA is then tailored with special treatments to handle the specific issues for each kind of data. For metagenomic sequencing data, a graph partition algorithm is proposed to separate de Bruijn graph into dense components, which represent similar regions in subspecies from the same species, and multiple sequence alignment is used to produce consensus of each component. For sequencing data with highly uneven depth such as single-cell and metagenomic sequencing data, a method called local assembly is designed to reconstruct missing k-mers in low-depth regions. Then, based on the observation that short and relatively low-depth contigs are more likely erroneous, progressive depth on contigs is used to remove errors in both low-depth and high-depth regions iteratively. For transcriptome sequencing data, a variant of the progressive depth method is adopted to decompose the de Bruijn graph into components corresponding to transcripts from the same gene, and then the transcripts are found in each component by considering the reads and paired-end reads support. Plenty of experiments on both simulated and real data show that IDBA assemblers outperform the existing assemblers by constructing longer contigs with higher completeness and similar or better accuracy. The running time of IDBA assemblers is comparable to existing algorithms, while the memory cost is usually less than the others. / published_or_final_version / Computer Science / Doctoral / Doctor of Philosophy
10

EFFICIENT CONSTRUCTION OF ACCURATE MULTIPLE ALIGNMENTS AND LARGE-SCALE PHYLOGENIES

Wheeler, Travis John January 2009 (has links)
A central focus of computational biology is to organize and make use of vast stores of molecular sequence data. Two of the most studied and fundamental problems in the field are sequence alignment and phylogeny inference. The problem of multiple sequence alignment is to take a set of DNA, RNA, or protein sequences and identify related segments of these sequences. Perhaps the most common use of alignments of multiple sequences is as input for methods designed to infer a phylogeny, or tree describing the evolutionary history of the sequences. The two problems are circularly related: standard phylogeny inference methods take a multiple sequence alignment as input, while computation of a rudimentary phylogeny is a step in the standard multiple sequence alignment method.Efficient computation of high-quality alignments, and of high-quality phylogenies based on those alignments, are both open problems in the field of computational biology. The first part of the dissertation gives details of my efforts to identify a best-of-breed method for each stage of the standard form-and-polish heuristic for aligning multiple sequences; the result of these efforts is a tool, called Opal, that achieves state-of-the-art 84.7% accuracy on the BAliBASE alignment benchmark. The second part of the dissertation describes a new algorithm that dramatically increases the speed and scalability of a common method for phylogeny inference called neighbor-joining; this algorithm is implemented in a new tool, called NINJA, which is more than an order of magnitude faster than a very fast implementation of the canonical algorithm, for example building a tree on 218,000 sequences in under 6 days using a single processor computer.

Page generated in 0.0256 seconds