• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 6
  • 3
  • 1
  • Tagged with
  • 23
  • 23
  • 8
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

[pt] CONCEITOS CENTRAIS E COMPONENTIZAÇÃO DE DIAGRAMAS DE CLASSE UML REPRESENTADOS EM GRAFO / [en] CORE CONCEPTS AND COMPONENTIZATION OF UML CLASS DIAGRAMS REPRESENTED IN GRAPH

23 December 2021 (has links)
[pt] O objetivo do trabalho é o desenvolvimento de uma aplicação web capaz de realizar diferentes análises de diagramas UML. Umas dascaracterísticas da ferramenta é a compatibilidade com outras ferramentas de edição de diagramas UML. Para isto, foi implementado um parser genérico XMI que importa driagramas de classe e gera um grafo orientado equivalente. Com a posse do grafo, são realizados estudos capazes de adicionar informações extras aos diagramas. O primeiro estudo é a identificação de quais clases compõesm o core concept (classes de alta importância para o sistema). Outro estudo é a clusterização deste grafo a fim de agrupar classes em propostas de componentes. Por fim, são discutidas estimativas de importância, do grau de coesão, além de métricas de acoplamento e tamanho do diagrama como um todo e dos componetes gerados. / [en] The goal of this dissertation is to develop a web application that explores different analysis of UML diagrams. One of the main features of this tool is the compatibility with other tools that create UML diagrms. In order to do that, we implemented a generic XMI parser that import class diagrams and provides as result a directed graph. With this graph in hand, we conducted studies that provide extra information regrading this diagram. The first study is the identification of the classes that can be considered core concepts (defining the important classes of the system). The other study permorms graph clustering, aiming to create groups pf classes, making it possible to generate components. Finally, we discuss estimates of importance and degree of cohesion, as well as size and coupling metrics of the diagram as a whole and the generated components.
22

Transformada imagem-floresta com funções de conexidade não suaves: pesos adaptativos, polaridade de borda e restrições de forma / Image foresting transform with non-smooth connectivity functions: adaptive weights, boundary polarity, and shape constraints

Mansilla, Lucy Alsina Choque 26 February 2014 (has links)
Segmentar uma imagem consiste em particioná-la em regiões relevantes para uma dada aplicação, como para isolar um objeto de interesse no domínio de uma imagem. A segmentação é um dos problemas mais fundamentais e desafiadores em processamento de imagem e visão computacional. Ela tem desempenhado um papel importante, por exemplo, na pesquisa em neurologia, envolvendo imagens de Ressonância Magnética (RM), para fins de diagnóstico e tratamento de doenças relacionadas com alterações na anatomia do cérebro humano. Métodos de segmentação baseados na transformada imagem- floresta (IFT, Image Foresting Transform), com funções de conexidade suaves, possuem resultados ótimos, segundo o critério da otimalidade dos caminhos descrito no artigo original da IFT, e têm sido usados com sucesso em várias aplicações, como por exemplo na segmentação de imagens RM de 1.5 Tesla. No entanto, esses métodos carecem de restrições de regularização de borda, podendo gerar segmentações com fronteiras muito irregulares e indesejadas. Eles também não distinguem bem entre bordas similares com orientações opostas, e possuem alta sensibilidade à estimativa dos pesos das arestas do grafo, gerando problemas em imagens com efeitos de inomogeneidade. Nesse trabalho são propostas extensões da IFT, do ponto de vista teórico e experimental, através do uso de funções de conexidade não suaves, para a segmentação interativa de imagens por região. A otimalidade dos novos métodos é suportada pela maximização de energias de corte em grafo, ou como o fruto de uma sequência de iterações de otimização de caminhos em grafos residuais. Como resultados principais temos: O projeto de funções de conexidade mais adaptativas e flexíveis, com o uso de pesos dinâmicos, que permitem um melhor tratamento de imagens com forte inomogeneidade. O uso de grafos direcionados, de modo a explorar a polaridade de borda dos objetos na segmentação por região, e o uso de restrições de forma que ajudam a regularizar a fronteira delineada, favorecendo a segmentação de objetos com formas mais regulares. Esses avanços só foram possíveis devido ao uso de funções não suaves. Portanto, a principal contribuição desse trabalho consiste no suporte teórico para o uso de funções não suaves, até então evitadas na literatura, abrindo novas perpectivas na pesquisa de processamento de imagens usando grafos. / Segmenting an image consist in to partition it into relevant regions for a given application, as to isolate an object of interest in the domain of an image. Segmentation is one of the most fundamental and challenging problems in image processing and computer vision. It has played an important role, for example, in neurology research, involving images of Magnetic Resonance (MR), for the purposes of diagnosis and treatment of diseases related to changes in the anatomy of the human brain. Segmentation methods based on the Image Foresting Transform (IFT), with smooth connectivity functions, have optimum results, according to the criterion of path optimality described in the original IFT paper, and have been successfully used in many applications as, for example, the segmentation of MR images of 1.5 Tesla. However, these methods present a lack of boundary regularization constraints and may produce segmentations with quite irregular and undesired boundaries. They also do not distinguish well between similar boundaries with opposite orientations, and have high sensitivity to the arc-weight estimation of the graph, producing poor results in images with strong inhomogeneity effects. In this work, we propose extensions of the IFT framework, from the theoretical and experimental points of view, through the use of non-smooth connectivity functions for region-based interactive image segmentation. The optimality of the new methods is supported by the maximization of graph cut energies, or as the result of a sequence of paths optimizations in residual graphs. We have as main results: The design of more adaptive and flexible connectivity functions, with the use of dynamic weights, that allow better handling of images with strong inhomogeneity. The use of directed graphs to exploit the boundary polarity of the objects in region-based segmentation, and the use of shape constraints that help to regularize the segmentation boundary, by favoring the segmentation of objects with more regular shapes. These advances were only made possible by the use of non-smooth functions. Therefore, the main contribution of this work is the theoretical support for the usage of non-smooth functions, which were until now avoided in literature, opening new perspectives in the research of image processing using graphs.
23

Transformada imagem-floresta com funções de conexidade não suaves: pesos adaptativos, polaridade de borda e restrições de forma / Image foresting transform with non-smooth connectivity functions: adaptive weights, boundary polarity, and shape constraints

Lucy Alsina Choque Mansilla 26 February 2014 (has links)
Segmentar uma imagem consiste em particioná-la em regiões relevantes para uma dada aplicação, como para isolar um objeto de interesse no domínio de uma imagem. A segmentação é um dos problemas mais fundamentais e desafiadores em processamento de imagem e visão computacional. Ela tem desempenhado um papel importante, por exemplo, na pesquisa em neurologia, envolvendo imagens de Ressonância Magnética (RM), para fins de diagnóstico e tratamento de doenças relacionadas com alterações na anatomia do cérebro humano. Métodos de segmentação baseados na transformada imagem- floresta (IFT, Image Foresting Transform), com funções de conexidade suaves, possuem resultados ótimos, segundo o critério da otimalidade dos caminhos descrito no artigo original da IFT, e têm sido usados com sucesso em várias aplicações, como por exemplo na segmentação de imagens RM de 1.5 Tesla. No entanto, esses métodos carecem de restrições de regularização de borda, podendo gerar segmentações com fronteiras muito irregulares e indesejadas. Eles também não distinguem bem entre bordas similares com orientações opostas, e possuem alta sensibilidade à estimativa dos pesos das arestas do grafo, gerando problemas em imagens com efeitos de inomogeneidade. Nesse trabalho são propostas extensões da IFT, do ponto de vista teórico e experimental, através do uso de funções de conexidade não suaves, para a segmentação interativa de imagens por região. A otimalidade dos novos métodos é suportada pela maximização de energias de corte em grafo, ou como o fruto de uma sequência de iterações de otimização de caminhos em grafos residuais. Como resultados principais temos: O projeto de funções de conexidade mais adaptativas e flexíveis, com o uso de pesos dinâmicos, que permitem um melhor tratamento de imagens com forte inomogeneidade. O uso de grafos direcionados, de modo a explorar a polaridade de borda dos objetos na segmentação por região, e o uso de restrições de forma que ajudam a regularizar a fronteira delineada, favorecendo a segmentação de objetos com formas mais regulares. Esses avanços só foram possíveis devido ao uso de funções não suaves. Portanto, a principal contribuição desse trabalho consiste no suporte teórico para o uso de funções não suaves, até então evitadas na literatura, abrindo novas perpectivas na pesquisa de processamento de imagens usando grafos. / Segmenting an image consist in to partition it into relevant regions for a given application, as to isolate an object of interest in the domain of an image. Segmentation is one of the most fundamental and challenging problems in image processing and computer vision. It has played an important role, for example, in neurology research, involving images of Magnetic Resonance (MR), for the purposes of diagnosis and treatment of diseases related to changes in the anatomy of the human brain. Segmentation methods based on the Image Foresting Transform (IFT), with smooth connectivity functions, have optimum results, according to the criterion of path optimality described in the original IFT paper, and have been successfully used in many applications as, for example, the segmentation of MR images of 1.5 Tesla. However, these methods present a lack of boundary regularization constraints and may produce segmentations with quite irregular and undesired boundaries. They also do not distinguish well between similar boundaries with opposite orientations, and have high sensitivity to the arc-weight estimation of the graph, producing poor results in images with strong inhomogeneity effects. In this work, we propose extensions of the IFT framework, from the theoretical and experimental points of view, through the use of non-smooth connectivity functions for region-based interactive image segmentation. The optimality of the new methods is supported by the maximization of graph cut energies, or as the result of a sequence of paths optimizations in residual graphs. We have as main results: The design of more adaptive and flexible connectivity functions, with the use of dynamic weights, that allow better handling of images with strong inhomogeneity. The use of directed graphs to exploit the boundary polarity of the objects in region-based segmentation, and the use of shape constraints that help to regularize the segmentation boundary, by favoring the segmentation of objects with more regular shapes. These advances were only made possible by the use of non-smooth functions. Therefore, the main contribution of this work is the theoretical support for the usage of non-smooth functions, which were until now avoided in literature, opening new perspectives in the research of image processing using graphs.

Page generated in 0.4533 seconds