• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 122
  • 108
  • 29
  • 14
  • 9
  • 8
  • 7
  • 7
  • 7
  • 7
  • 7
  • 7
  • 4
  • 4
  • 3
  • Tagged with
  • 351
  • 211
  • 109
  • 78
  • 66
  • 56
  • 55
  • 52
  • 51
  • 48
  • 48
  • 47
  • 45
  • 43
  • 42
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Demountable reinforced concrete slabs using dry connection

Almahmood, Hanady A.A., Ashour, Ashraf, Figueira, Diogo, Yildirim, Gurkan, Aldemir, A., Sahmaran, M. 06 May 2023 (has links)
Yes / This paper presents an experimental investigation of a new dry connection for reinforced concrete slab elements. Seven full-scale slabs were tested; one slab was monolithic as control specimens, while the other six were assembled using top and bottom steel plates joined by high tensile steel bolts. Two scenarios were proposed for the connection, a simple bolted connection, and a connection with a shear key. The parameters studied were the use of stirrups at the connection section, the step size of the shear key as well as the bolt diameter and number. The test results showed that using a shear key at the assembled section in demountable slabs is more efficient than the simple bolted connection, providing higher flexural stiffness, load capacity, and less deflection. However, increasing the shear key step size improved the flexural performance of the demountable slabs. In addition, adding stirrups to the assembled section enhanced the flexural stiffness and the total load capacity of the demountable slabs. Furthermore, the predictions for the moment capacity and deflection demountable slabs have reasonably good agreement with the experimental results but require additional calibrated data from experiments to be generalized. / Department for Business, Energy and Industrial Strategy (BEIS)
22

Load-deflexion characteristics of reinforced concrete slabs - an experimental and theoretical investigation by the finite method

Asante-Nimako, Michael January 1983 (has links)
No description available.
23

The behaviour and strength of unbonded post-tensioned concrete flat slabs at internal columns

Franklin, S. O. January 1981 (has links)
No description available.
24

Effects of cracking and warping on the response of reinforced concrete plates subjected to lateral and eccentric loads

Abeberese, Yaw Kusi January 2011 (has links)
Digitized by Kansas Correctional Industries
25

The behaviour of reinforced concrete flat slabs

Jenkins, Bryan Robert. January 1972 (has links) (PDF)
No description available.
26

Strengthening of reinforced concrete two-way slabs /

Ebead, Usama Ali Ali. January 2002 (has links)
Thesis (Ph.D.)--Memorial University of Newfoundland, 2002. / Bibliography: leaves 231-245.
27

FRP-strengthened RC slabs anchored with FRP anchors

Hu, Shenghua, 胡盛华 January 2011 (has links)
Existing reinforced concrete (RC) structure can be strengthened upon the addition of externally bonded high-strength light-weight fibre-reinforced polymer (FRP) composites. An abundance of research over the last two decades has established the effectiveness of the externally bonded FRP via extensive experimental testing. Perhaps the most commonly occurring failure mode though is premature debonding of the FRP and debonding generally occurs at strains well below the strain capacity of the FRP. Debonding failures are undesirable as they are typically brittle and represent an under-utilisation of the FRP material. A straightforward means to prevent or at least delay debonding is by the addition of mechanical anchors, however, research to date on anchors is extremely limited. Of the various anchor concepts examined to date by researchers, this dissertation will focus on anchors made from FRP which are herein referred to as FRP anchors. The details and results of a program of research on the performance of FRP anchors in FRP-strengthened structures are presented in this dissertation. An extensive review of exiting literature helps establish knowledge gaps which serve to justify the need and the scope of the research reported herein. A novel bow-tie FRP anchor concept is then proposed and tested in smaller-scale single-shear FRP-to-concrete joint assemblages as well as larger-scale simply-supported FRP-strengthened RC slabs. The anchors are shown to increase the strength and slip capacity of the joints by up to 41 % and almost 600 %, respectively, in comparison with unanchored control joints. The anchors are then shown to increase the load and deflection capacity of slabs by 30 % and 110 %, respectively, above an unanchored control slab. In addition to strength, it is the ability of FRP anchors to introduce deformability into FRP-strengthened RC slabs which is particularly beneficial in order to produce safer structures. An analytical model is then developed which is based on a novel quad-linear moment-curvature response which can capture the complete load-deflection response of the FRP-strengthened slabs anchored with FRP anchors. The analytical modeling approach enables closed-form equations to be derived which can then be used by design engineers to relatively easily construct load-deflections responses and accurately predict member responses. Following the concluding comments for the project as a whole, future research topics of relevance are identified. / published_or_final_version / Civil Engineering / Master / Master of Philosophy
28

Photoelectron diffraction for structure analysis-a comparison of cluster and slab approaches

吳鎮宇, Ng, Chun-yu. January 1997 (has links)
published_or_final_version / Physics / Master / Master of Philosophy
29

Ultimate flexural strength of flat slabs: with particular attention to membrane action

Sakolosky, John Joseph, 1941- January 1966 (has links)
No description available.
30

Steel fiber reinforced concrete ground slabs : a comparative evaluation of plain and steel fiber reinforced concrete ground slabs

Elsaigh, W. A. January 2006 (has links)
Thesis (M.Eng.(Transportation Engineering)--University of Pretoria, 2001. / Summaries in Afrikaans and English. Includes bibliographical references.

Page generated in 0.0356 seconds