• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 78
  • 57
  • 11
  • 9
  • 5
  • 3
  • 2
  • 2
  • 1
  • Tagged with
  • 201
  • 201
  • 72
  • 56
  • 52
  • 47
  • 43
  • 41
  • 33
  • 28
  • 25
  • 24
  • 24
  • 22
  • 22
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Deep soil mixing as a slope stabilization technique in Northland Allochthon residual clay soil

Tatarniuk, Catherine January 2014 (has links)
Road slips are common in Northland Allochthon residual clay soil, and are commonly mitigated using deep soil mixing (DSM). A deficiency in laboratory investigations on Northland Allochthon residual clay and a need for a better understanding of the numerical modelling of DSM columns used to mitigate unstable slopes in this soil type is evident in literature, and has been highlighted by practitioners. This research has aimed to fill aspects of these deficiencies. Field testing and classification tests have provided insight into how the soil varies between sites and with depth, and how in situ testing methods compare to one another. Field testing has also demonstrated that soil property changes around DSM columns have been shown to exist through seismic flat plate dilatometer testing before and after column installation, which has not previously been proven using an in situ method. This is important for practitioners who use DSM to demonstrate the additional soil improvements provided by the columns. The testing of reconstituted soil is fundamental in examining soil behaviour, and this study is the first to examine the triaxial behaviour of reconstituted specimens of Northland Allochthon soil. Laboratory triaxial testing and oedometer testing have allowed for a normalized comparison of the intact strength of Northland Allochthon residual clay soil to its reconstituted state. This work provides an answer to the important question regarding the role of soil structure in this soil type. It was revealed that soil structure results in increased shear strength of the soil, and that this increase is primarily cohesive in nature. The near coincidence of the post-rupture strength of intact specimens with the critical state angle of internal shearing resistance provides support for its use in examining first time slope failures in this soil type. This is an important finding for practitioners, as it demonstrates the value of testing reconstituted specimens, which are much easier to obtain than high quality intact specimens. In addition, relationships between the plasticity index (PI) of the soil and certain soil parameters (and soil behaviour) have been demonstrated to be relevant and useful for this soil type. Soil properties acquired in this study were tabulated along with those from other field sites in Northland Allochthon soil. It was found that there is significant variation between field sites, likely due to varying degrees of weathering, which is an important consideration for practitioners dealing with this soil type. A brief examination of constitutive models for representation of Northland Allochthon residual clay soil have shown that several different models can sufficiently represent the behaviour of this soil. The Mohr-Coulomb model was selected for use in subsequent finite element numerical models. A case study of a road slip at a field site in Northland Allochthon residual clay soil, mitigated using DSM columns, revealed that the use of a pre-existing slip surface after first time failure leads to an improved match between observed field behaviour and the behaviour of the slope as exhibited in a numerical model. This type of failure mechanism has not been previously examined in this soil type, and this case study demonstrates it is a useful approach that should be considered when dealing with second time failure in Northland Allochthon slopes. This numerical model also introduces the replacement ratio method (RRM), a technique used to represent the three dimensional (3D) geometry of the DSM columns in the more commonly used two dimensional (2D) analysis. Examination of laterally loaded DSM columns in plan view, which has not previously been performed in the context of DSM columns, has illustrated how installation effects and column shape influence load displacement curves, and demonstrates the effects of soil arching. This analysis provides practitioners with evidence that improved soil property changes, found to occur around DSM columns, lead to improved DSM column performance. A simplified 3D numerical model of laterally loaded DSM columns, which builds on the ideas developed in the previous two 2D models, has been compared to an identical 2D model. It is shown that the commonly used RRM results in an overestimation of the resisting force provided by the columns as compared to the 3D model. However, this does not necessarily imply that the use of the RRM in an analysis will always result in a safe slope. The degree to which its use will affect the results will depend on the slope geometry, location of the DSM columns, and the type of analysis performed (i.e. factor of safety or deformation based). A modification to the RRM has been proposed. It is recommended that when the DSM column diameter and soil properties are similar to those used in this study, the MRRM developed in this study should be utilized. In circumstances where they differ, it is recommended that practitioners perform a sensitivity analysis using the MRRM developed here as a basis for modifying the RRM in order to determine the extent to which their results are influenced. If the influence is significant, the use of a 3D model should be considered.
12

Modelling mass movement risk under semi-arid mountainous conditions : the Alpujarride complex, Spain

Alcantara-Ayala, Irasema January 1997 (has links)
No description available.
13

The role of rapid recharge processes in the initiation of landslides

Vivian, Benjamin James January 1998 (has links)
No description available.
14

Centrifuge Modelling of Instability in Granular Soils under Infinite Slope Conditions

Jacobs, EMILY 04 December 2013 (has links)
Rainfall induced granular flow slides pose a significant risk in many areas of the world. These failures, characterized by the sudden release of material in a fluid-like manner, are the result of static liquefaction occurring in these slopes. The static liquefaction phenomenon has been linked to instability. Instability behaviour is primarily studied under undrained triaxial conditions, and although many instability theories have therefore been defined in this stress space, these have been shown to also extend into plane strain conditions. In order to further investigate this behaviour under these stress conditions, Wolinsky et al. (2013) developed a tilt-table soil box for use in a geotechnical centrifuge to analyze instability in infinite slope soil models. This testing apparatus has been used to simulate instability in plane strain under both dry and saturated soil conditions. Stress-controlled experiments were performed on dry infinite slope soil models to investigate the effects of both void ratio and effective stress on instability behaviour. By performing these tests dry, this test apparatus provides the ability to decouple the triggers of instability from the corresponding response in pore pressure and the consequences. The results of this testing confirmed that the instability line angle is a function of both void ratio and effective stress. As the void ratio decreases and effective stress in the soil model increases, the resulting instability line angle will increase. This testing also demonstrated typical stress-dilatancy behaviour in these infinite slope models, characterized by contractive response in loose soils and dilative response in dense soil subject to increasing shear stress. Secondly, this testing apparatus was used to investigate the effects of seepage force on instability behaviour in granular slopes through the introduction of groundwater seepage in the form of a rising groundwater level. Although the results illustrated shear and volumetric response to these increased pore water pressures, these were not significant enough to initiate instability and the resulting pore water response leading to failure. It has been determined that this apparatus must be further adapted to dissipate the matric suctions developed above the water table during groundwater rise. / Thesis (Master, Civil Engineering) -- Queen's University, 2013-12-03 21:06:56.806
15

Field measurement and numerical modelling of infiltration and matric suctions within slopes

Tsaparas, Ilias January 2002 (has links)
No description available.
16

Coupled Effect of Geosynthetics and Randomly Distributed Fibers on the Stability of Reinforced Slopes

Unknown Date (has links)
The coupled effect of using geosynthetic reinforcement and randomly distributed fibers on the stability of slopes was evaluated using finite element modeling and limit equilibrium methods by analyzing a case study in Oslo, Norway. The main objective was to simulate the failure condition of the original slope and quantify the improved stability of a hypothetical reinforced slope constructed with geosynthetic layers and distributed discrete fibers. The stability of the slope was evaluated in both the short-term condition with its' undrained shear strength parameters, and the long-term drained condition. Results indicate that the combination of the techniques was found to have a possible increase of about 40% in the short-term condition and about 60% in the long-term condition of the factor safety associated with the slope. / Includes bibliography. / Thesis (M.S.)--Florida Atlantic University, 2019. / FAU Electronic Theses and Dissertations Collection
17

Submarine landslides offshore Vancouver Island, British Columbia and the possible role of gas hydrates in slope stability

Scholz, Nastasja Anais 21 January 2014 (has links)
This dissertation investigates the nature of submarine landslides along the deformation front of the northern Cascadia subduction zone. As the first slope stability analysis on the west coast of Vancouver Island, this study covers a variety of large-scale tectonic to small-scale, site-specific factors to investigate the nature of slope failure. Slope failure occurred mainly on the steep slopes of frontal ridges that were formed by compressive forces due to the subduction of the Juan de Fuca plate. Multi-beam swath bathymetry data are used to study the morphology of the whole margin and the geometry of two Holocene landslides that serve as representative examples. The overall margin stability is estimated using the critical taper theory, and a first-order limit equilibrium slope stability analysis provides threshold values for external forces to cause slope failure. The present-day pore pressure regime at different sites of the Cascadia margin is estimated from log-density data and expected ground accelerations are calculated via ground motion attenuation relationships. A comparison to threshold values derived from the limit equilibrium analysis suggests that, at present, slope stability is more sensitive to overpressure than to earthquake shaking. Differences in power spectral density derived from OBS-velocity data imply a slightly amplified ground response at the ridge crest compared to sites along the continental shelf and abyssal plain. Apart from estimating the trigger mechanisms of submarine landslides offshore Vancouver Island, a particular consideration is given to the potential link between slope failure and methane hydrate occurrence. The history of the gas hydrate stability zone (GHSZ) boundaries is investigated using information on regional sea-level history. Assuming colder ocean-bottom temperatures during the Holocene, a gradual shoaling of the BSR is inferred, which potentially could have caused hydrate melting. Pore pressure due to hydrate dissociation, as estimated by a previously developed method, varies over several orders of magnitude. Depending on sediment permeability, overpressure ratios can be comparable to threshold values. The two Holocene landslides are modeled numerically using a two-dimensional finite difference code in order to recreate the along-strike variability in ridge geometry and slide morphology observed along the northern Cascadia margin. Geometry and morphology correlate with the two prevalent slide mechanisms and model results suggest that sediment yield strength and average slide thickness are associated with the slide mechanism as well. / Graduate / 0373 / nscholz@uvic.ca
18

The study of an active landslide in the Swainswick Valley, north of Bath

Anson, Richard January 1996 (has links)
No description available.
19

The coastal landslides forming the undercliff of the Isle of Wight

Chandler, Martin Philip January 1984 (has links)
No description available.
20

Analysis of a Lateral Spreading Case History from the 2007 Pisco, Peru Earthquake

Gangrade, Rajat Mukesh 21 June 2013 (has links)
On August 15, 2007, Pisco, Peru was hit by an earthquake of Magnitude (Mw) = 8.0 which triggered multiple liquefaction induced lateral spreads. The subduction earthquake lasted for approximately 100 seconds and showed a complex rupture. From the geotechnical perspective, the Pisco earthquake was significant for the amount of soil liquefaction observed. A massive liquefaction induced seaward displacement of a marine terrace was observed in the Canchamana complex. Later analysis using the pre- and post-earthquake images showed that the lateral displacements were concentrated only on some regions. Despite the lateral homogeneity of the marine terrace, some cross-sections showed large displacements while others had minimal displacements. The detailed documentation of this case-history makes it an ideal case-study for the determination of the undrained strength of the liquefied soils; hence, the main objective of this research is to use the extensive data from the Canchamana Slide to estimate the shear strength of the liquefied soils. In engineering practice, the undrained strength of liquefied soil is typically estimated by correlating SPT-N values to: 1) absolute value of residual strength, or 2) residual strength ratio. Our research aims to contribute an important data point that will add to the current understanding of the residual strength of liquefied soils. / Master of Science

Page generated in 0.1478 seconds