• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 161
  • 107
  • 30
  • 30
  • 10
  • 10
  • 10
  • 10
  • 10
  • 10
  • 3
  • 3
  • 2
  • 2
  • 2
  • Tagged with
  • 417
  • 417
  • 232
  • 111
  • 109
  • 77
  • 73
  • 68
  • 65
  • 54
  • 50
  • 42
  • 39
  • 36
  • 36
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
231

An Investigation Of The Inertial Interaction Of Building Structures On Shallow Foundations With Simplified Soil-structure Interaction Analysis Methods

Eyce, Bora 01 September 2009 (has links) (PDF)
Seismic response of a structure is influenced by the inertial interaction between structure and deformable medium, on which the structure rests, due to flexibility and energy dissipation capability of the surrounding soil. The inertial interaction analyses can be performed by utilizing simplified soil-structure interaction (SSI) analyses methods. In literature, it is noted that varying soil conditions and foundation types can be modeled by using these SSI approaches with springdashpot couples having certain stiffness and damping. In this study, the seismic response of superstructure obtained by using simplified SSI methods is compared with those of the fixed base systems. For this purpose, single and multi degree of freedom structural systems are modeled with both spring&ndash / dashpot couple and fixed base models. Each system is analyzed for varying structural and soil stiffness conditions under the excitation of three different seismic records. Next, the total base shear acting on the structural system and internal forces of load bearing members are investigated to observe the inertial interaction and foundation uplift effects on the superstructure. It is also aimed to examine the compatibility of the simplified SSI approaches utilized in the analyses. It is concluded that the structural and soil stiffness parameters are the most influential parameters that affect seismic structural response. Structures becomemore sensitive to varying soil properties as the structural stiffness increases. On the other hand, decreasing soil stiffness also increases the sensitivity of the structure to the seismic excitation. Calculated values of total base shear and internal member forces revealed that the inertial interaction might be detrimental for the superstructure. Contrary to general belief, the fixed base approach does not always yield to the results, which are on the safe side. Considering the analysis results, it is concluded that SSI analysis is very useful for more precise and economical design for the seismic behavior.
232

Investigation Of The Effect Of Soil Structure Interaction On The Behavior Of Concrete Faced Rockfill Dams And Assesment Of Current Analysis Methodologies

Erdogan, Emrah Ersan 01 June 2012 (has links) (PDF)
CFRD (Concrete Faced Rockfill Dam) construction becomes more frequent recently not only because of its secure nature, but also its economical cost where its built up material is feasible to obtain. Although CFRDs are known to be safe compared to other dam types, it is behavior during an earthquake loading still not a well-known aspect since it is mostly constructed in regions of low seismicity until now. Considering this fact, this study
233

Woodland development and soil carbon and nitrogen dynamics and storage in a subtropical savanna ecosystem

Liao, Julia Den-Yue 17 February 2005 (has links)
Woody plant invasion of grasslands is prevalent worldwide, but the biogeochemical consequences of this vegetation shift remain largely unquantified. In the Rio Grande Plains, TX, grasslands and savannas dominated by C4 grasses have undergone succession over the past century to subtropical thorn woodlands dominated by C3 trees/shrubs. To elucidate mechanisms of soil organic carbon (SOC) and soil total N (STN) storage and dynamics in this ecosystem, I measured the mass and isotopic composition (δ13C, δ15N) of C and N in whole-soil and soil size/density fractions in chronosequences consisting of remnant grasslands (Time 0) and woody plant stands ranging in age from 10-130 years. Rates of SOC and STN storage averaged 10-30 g C m-2yr-1 and 1-3 g N m-2yr-1, respectively. These accumulation rates increased soil C and N pools 80-200% following woody encroachment. Soil microbial biomass (SMB-C) also increased after woody invasion. Decreasing Cmic/C org and higher qCO2 in woodlands relative to grasslands suggests that woody litter is of poorer quality than grassland litter. Greater SOC and STN following woody invasion may also be due to increased protection of organic matter by stable soil structure. Soil aggregation increased following woody encroachment; however, most of the C and N accumulated in free particulate organic matter (POM) fractions not protected within aggregates. Mean residence times (MRTs) of soil fractions were calculated based on changes in their δ13C with time after woody encroachment. Free POM had the shortest average MRTs (30 years) and silt+clay the longest (360 years). Fine POM had MRTs of about 60 years, reflecting protection by location within aggregates. δ15N values of soil fractions were positively correlated with their MRTs, suggesting that higher δ15N values reflect an increased degree of humification. Increases in SOC and STN are probably being sustained by greater inputs, slower turnover of POM (some biochemical recalcitrance), and protection of organic matter in aggregates and association with silt and clay. Grassland-to-woodland conversion during the past century has been geographically extensive in grassland ecosystems worldwide, suggesting that changes in soil C and N dynamics and storage documented here could have significance for global C and N cycles.
234

A non-linear dynamic macroelement for soil structure interaction analyses of piles in liquefiable sites

Varun 01 July 2010 (has links)
A macroelement is developed for soil-structure interaction analyses of piles in liquefiable soils, which captures efficiently the fundamental mechanisms of saturated granular soil behavior. The mechanical model comprises a nonlinear Winkler-type model that accounts for soil resistance acting along the circumference of the pile, and a coupled viscous damper that simulates changes in radiation damping with increasing material non-linearity. Three-dimensional (3D) finite element (FE) simulations are conducted for a pile in radially homogeneous soil to identify the critical parameters governing the response. The identified parameters, i.e., hydraulic conductivity, loading rate of dynamic loading, dilation angle and liquefaction potential are then expressed in dimensionless form. Next, the macroelement parameters are calibrated as a function of the soil properties and the effective stress. A semi-empirical approach that accounts for the effects of soil-structure interaction on pore pressure generation in the vicinity of pile is used to detect the onset of liquefaction. The predictions are compared with field data obtained using blast induced liquefaction and centrifuge tests and found to be in good agreement. Finally, the macroelement formulation is extended to account for coupling in both lateral directions. FEM simulations indicate that response assuming no coupling between the two horizontal directions for biaxial loading tends to overestimate the soil resistance and fails to capture features like 'apparent negative stiffness', 'strain hardening' and 'rounded corners'.
235

Ενεργειακή λύση για συμπεριφορά πλευρικά φορτιζόμενου πασσάλου με χρήση καμπυλών "p-y"

Ψαρουδάκης, Εμμανουήλ 12 March 2015 (has links)
Αντικείμενο του παρόντος άρθρου αποτελεί η ανάλυση της συμπεριφοράς πασσάλου, υπό αξονική φόρτιση μεγάλου εύρους, η οποία μπορεί να οδηγήσει σε απώλεια φέρουσας ικανότητας. Συγκεκριμένα, εξετάζεται ο συντελεστής στατικής δυσκαμψίας μεμονωμένου κατακόρυφου πασσάλου εμπεδωμένου σε ομοιογενές ή πολυστρωματικό έδαφος τυχαίας γεωμετρίας και μηχανικών ιδιοτήτων. Για την επίλυση του προβλήματος αναπτύσσεται αναλυτική λύση κλειστού τύπου βασισμένη στη θεωρία Winkler. Στο εν λόγω μοντέλο η προσομοίωση της μηχανικής συμπεριφοράς του εδάφους γίνεται μέσω μή-γραμμικών ελατηρίων “t-z” τοποθετημένων κατά μήκος του άξονα και στη βάση του πασσάλου, σε συνδυασμό με συναρτήσεις σχήματος, οι οποίες περιγράφουν αξιόπιστα την μεταβολή της κατακόρυφης μετακίνηση του πασσάλου με το βάθος. Με επιλογή κατάλληλης συνάρτησης σχήματος και καμπυλών “t-z”, και μετά από επαναληπτική διαδικασία εφαρμογής, επιτυγχάνεται ικανοποιητική ακρίβεια στην τιμή της δυσκαμψίας για κατακόρυφη μετακίνηση στην κεφαλή του πασσάλου. Σε αντίθεση με τις κλασικές αριθμητικές λύσεις, η προτεινόμενη μέθοδος δεν απαιτεί διακριτοποίηση του πασσάλου σε πεπερασμένα στοιχεία (και στη συνέχεια επίλυση ενός συστήματος γραμμικών εξισώσεων μεγάλης τάξης), παρά μόνο σε "κελιά" με στόχο την ολοκλήρωση με το βάθος. Έτσι, τα παραγόμενα αποτελέσματα είναι διαχείρισιμα ακόμα και μέσω απλού φύλλου εργασίας σε Excel ή και υπολογιστή τσέπης. Η μέθοδος προγραμματίστηκε σε περιβάλλον Visual Basic 2010, κυρίως λόγω της δυνατότητας γραφικής παρουσίασης των αποτελεσμάτων και τη σύγκρισή τους με αντίστοιχα αποτελέσματα από άλλες μεθόδους. Τα αποτελέσματα κρίνονται ως ιδιαίτερα ενθαρρυντικά, καθώς συγκλίνουν ικανοποιητικά σε αυτά αυστηρότερων μεθόδων, χωρίς ανάγκη περίπλοκης αριθμητικής ανάλυσης η οποία να ξεφεύγει από τις γνώσεις και δυνατότητες του Γεωτεχνικού Μηχανικού. / In the present work the behavior of a pile submitted to large range lateral loading is analyzed, which may lead to failure of both the surrounding soil and the pile itself either at the head or in depth. Namely, we examine the static stiffness coefficients for displacement and rotation of a flexible pile, vertically embedded in a homogeneous or multilayer soil of random geometry and mechanical properties. To solve the problem, a simple analytical method is developed, based on Euler–Bernoulli classic beam model, incremented with non linear Winkler Springs. The non-linear behaviour of the pile is described in a cross-sectional plane through moment-curvature diagram. The model is used in combination with the principle of work and suitable shape functions, which describe reliably the elastic line of the pile when the lateral load is gradually increasing. By iterative implementation of the method, realistic predictions are achieved in the stiffness coefficients in swaying, rocking and cross-swaying-rocking. The number of iterations is relatively small if the stress level of the system is not significantly increased compared with the previous load step. Unlike classic numerical solutions, the proposed method does not require discretization of the pile into finite elements (resulting to solve a system of linear equations), but only in "cells", to integrate with depth. In this way, results can be generated throughout a simple worksheet or even a calculator. The method was implemented in a Visual Basic 2010 environment, mainly for reasons of graphical presentation and comparison of the results to other coming from relevant methods. The results of the aforementioned method are considered satisfactory, as they converge fairly well with those coming from more rigorous methods based on complicated numerical analyses. The results of the herein proposed method are also compared to experimental in situ results relatively successfully.
236

Floatation of underground structures in liquefiable soils

Chian, Siau Chen January 2012 (has links)
No description available.
237

Effects Of Soil Structure Interaction And Base Isolated Systems On Seismic Performance Of Foundation Soils

Soyoz, Serdar 01 July 2004 (has links) (PDF)
In this thesis primarily structural induced liquefaction potential was aimed to be analyzed. Also the effect of base isolation systems both on structural performance and liquefaction potential was studied. FLAC software was chosen for the analyses so that structure and soil could be modeled together. By these means the soil structure interaction effects were also examined. Four different structures and three different sites were analyzed under two different input motions. All the structures were also analyzed as base isolated. It was mainly found that depending on the structural type and for a certain depth the liquefaction potential could be higher under the structure than the one in the free field. Also it was concluded that base isolation systems were very effective for decreasing the story drifts, shear forces in the structure and liquefaction potential in the soil. It was also found that the interaction took place between structure, soil and input motions.
238

Investigation of potential spudcan punch-through failure on sand overlying clay soils

Lee, Kok Kuen January 2009 (has links)
When a jack-up foundation is installed on seabeds consisting of a sand layer overlying soft clay, potential for 'punch-through' failure exists. This happens due to an abrupt reduction in bearing resistance when the foundation punches a block of sand into the underlying soft clay in an uncontrolled manner. This can lead to a sudden large penetration that can cause temporary decommissioning and even toppling of the unit. This research has addressed this problem with the aim of developing a practical design method for the jack-up industry to assess potential punch-through hazards. This objective has been achieved with the successful development of a new conceptual model for predicting the peak penetration resistance and a consistent method for constructing a complete resistance profile of spudcan foundations penetrating through sand into the underlying clay. The analytical basis of the new conceptual model follows the approach for silo analysis, and takes into account the stress level and dilatant response of sand. It is therefore a significant improvement over the punching shear and load spread models recommended in the current industry guidelines SNAME (2002), which do not consider the strength properties of the sand. To provide relevant experimental data for the new model, an extensive series of 30 continuous penetration tests were performed using the UWA drum centrifuge. These experimental results were retrospectively simulated using finite element (FE) analysis, in order to back-calculate the stress-level dependent friction and dilation angles in the sand during peak penetration resistance. The back-analysis showed that larger values of peak resistance gave lower friction and dilation angles, which is consistent with gradual suppression of dilatancy under high confining stress. When compared to published results from visualisation experiments, the FE analysis showed a similar failure mechanism during peak resistance, where a frustum of sand was forced into the underlying clay, with the outer angle reflecting the dilation in the sand. This has formed the basis of the new conceptual model. The performance of the new model in predicting the experimental peak resistance was compared with other existing analytical methods. Additional experimental results, including those already in the literature, were incorporated in the comparative study. It was found that the new conceptual model generally gave a good prediction of the experimental values, while the prediction from SNAME (2002) was conservative, with the predicted values being about half the experimental results on average. It was also shown that the new model could be modified to predict the post-peak penetration resistance in the sand layer. Finally, an analytical method for predicting the resistance profiles in the underlying clay was devised based on new bearing capacity factors developed through FE analysis. By joining the values of peak resistance, post-peak resistance and the resistance profile in the underlying clay, a complete simplified penetration resistance profile for spudcan foundations in sand overlying clay can be generated. The predicted profiles were shown to match the experimental results well.
239

Aggregate coalescence and factors affecting it.

Hasanah, Uswah January 2007 (has links)
The phenomenon called soil aggregate coalescence occurs at contact-points between aggregates and causes soil strength to increase to values that can inhibit plant root exploration and thus potential yield. During natural wetting and drying, soil aggregates appear to ‘weld’ together with little or no increase in dry bulk density. The precise reasons for this phenomenon are not understood, but it has been found to occur even in soils comprised entirely of water stable aggregates. Soil aggregate coalescence has not been widely observed and reported in soil science and yet may pose a significant risk for crops preventing them from achieving their genetic and environmental yield potentials. This project used soil penetrometer resistance and an indirect tensile-strength test to measure the early stages of aggregate coalescence and to evaluate their effects on the early growth of tomato plants. The early stages of aggregate coalescence were thought to be affected by a number of factors including: the matric suction of water during application and subsequent drainage, the overburden pressure on moist soil in the root zone, the initial size of soil aggregates prior to wetting, and the degree of sodicity of the soil aggregates. Seven mainexperiments were conducted to evaluate these factors. The matric suction during wetting of a seedbed affects the degree of aggregate slaking that occurs, and the strength of the wetted aggregates. The matric suction during draining affects the magnitude of ‘effective stresses’ that operate to retain soil structural integrity as the soil drains and dries out. An experiment was conducted to evaluate the influence of matric suction (within a range of suctions experienced in the field) on aggregate coalescence using soils of two different textures. Sieved aggregates (0.5 to 2 mm diameter) from a coarse-textured and two fine-textured (swelling) soils were packed into cylindrical rings (4.77 cm i.d., 5 cm high) and subjected to different suctions on wetting (near-saturation, and 1 kPa), and on draining (10 kPa on sintered-glass funnels, and 100 kPa on ceramic pressure plates). After one-week of drainage, penetrometer resistance was measured as a function of depth to approximately 45 mm (penetrometer had a recessedshaft, cone diameter = 2 mm, advanced at a rate of 0.3 mm/min). Tensile strength of other core-samples was measured after air-drying using an indirect “Brazilian” crushing test. For the coarse-textured soil, penetrometer resistance was significantly greater for samples wet to near-saturation, despite there being no significant increase in dry bulk density; this was not the case for the finer-textured soils, and it was difficult to distinguish the effects of variable bulk density upon drying from those of the imposed wetting treatments. In both coarse- and fine-textured soils, the tensile strength was significantly greater for samples wet to near-saturation. Thus wetting- and draining-suctions were both found to influence the degree of soil aggregate coalescence as measured by penetrometer resistance and tensile strength. Aggregate coalescence in irrigated crops is known to develop as the growing season progresses. It was therefore thought to be linked to the repeated occurrence of matric suctions that enhance the phenomenon during cycles of wetting and draining. An experiment was conducted to determine the extent of aggregate coalescence in a coarsetextured and two fine-textured (swelling clay) soils during 8 successive cycles of wetting and draining. Sieved aggregates (0.5 to 2 mm diameter) from each soil were packed into cylindrical rings (4.77 cm i.d., 5 cm high) and wetted to near saturation for 24 h. They were then drained on ceramic pressure plates to a suction of 100 kPa for one week, after which penetrometer resistance and tensile strength were measured as described above. The degree of expression of aggregate coalescence depended on soil type. For the coarse-textured soil, repeated wetting and draining significantly increased bulk density, penetrometer resistance and tensile strength. For the fine-textured soil, penetrometer resistance and bulk density did not vary significantly with repeated wetting and draining; on the contrary, there was evidence in these swelling clay soils to suggest bulk density and penetrometer resistance decreased. However, there was a progressive increase in tensile strength as cycles of wetting and draining progressed. The expansive nature of the fine-textured soil appears to have masked the development of aggregate coalescence as measured by penetrometer resistance, but its expression was very clear in measurements of tensile strength despite the reduction in bulk density with successive wetting and draining. Field observations have indicated that aggregate coalescence is first expressed at the bottom of the seedbed and that it develops progressively upward to the soil surface during the growing season. This suggests that overburden pressures may enhance the onset of the phenomenon by increasing the degree of inter-aggregate contact. Soils containing large quantities of particulate organic matter were known to resist the onset of aggregate coalescence to some extent. An experiment was conducted to evaluate the effects of soil organic matter and overburden pressures, by placing brass cylinders of various weights (equivalent to static load pressures of 0, 0.49, 1.47 and 2.47 kPa) on the top of dry soil aggregates (0.5 – 2 mm diameter) having widely different soil organic carbon contents placed in steel rings 5 cm high and 5 cm i.d. With the weights in place, the aggregates were wetted to near-saturation for 24 h and then drained on ceramic pressure plates to a suction of 100 kPa for one week. Bulk density, penetrometer resistance and tensile strength were measured when the samples were removed from the pressure plates and they all increased significantly with increasing overburden pressure in the soil with low organic matter content, but not in the soil with high organic matter content. The amount of tillage used to prepare seedbeds influences the size distribution of soil aggregates produced – that is, more tillage produces finer seedbeds. The size distribution of soil aggregates affects the number of inter-aggregate contact points and this was thought to influence the degree of aggregate coalescence that develops in a seedbed. Previous work has shown that soil organic matter reduces aggregate coalescence and so an experiment was conducted to evaluate the effects of aggregate size and organic matter on the phenomenon. For soils with high and low organic matter contents, aggregate size fractions of < 0.5, 0.5 – 2, 2 – 4, and < 4 mm were packed into soil cores (as above) and wetted to near-saturation then drained to 100 kPa suction as described above. Penetrometer resistance and tensile strength were measured and found to increase directly with the amount of fine material present in the soil cores – being greater in the < 0.5 mm and < 4 mm fractions, and being less in the 0.5 – 2 mm and 2 – 4 mm fractions. In all cases, penetrometer resistance and tensile strength were lower in the samples containing more organic matter. The rate at which soil aggregates are wetted in a seedbed affects the degree of slaking and densification that occurs, and the extent to which aggregates are wetted influences the overall strength of a seedbed. Both wetting rate and the extent of wetting were believed to influence the onset of aggregate coalescence and were thought to be affected by soil organic matter and irrigation technique. An experiment was therefore designed to separate these effects so that improvements to management could be evaluated for their greatest efficacy – that is, to determine whether management should focus on improving irrigation technique or increasing soil organic matter content, or both. The rate of wetting was controlled by spraying (or not spraying) soil aggregates (0.5 – 2 mm diameter) with polyvinyl alcohol (PVA). Samples of coarse- and fine-textured soils were packed into steel rings (as above) and subjected to different application rates of water (1, 10 and 100 mm/h) using a dripper system controlled by a peristaltic pump. Samples were brought to either a near-saturated state or to a suction of 10 kPa for 24 h, and then drained on a pressure plate at a suction of 100 kPa for one week. Measurements of penetrometer resistance and tensile strength were then made as described above. As expected, penetrometer resistance was lower in samples treated with PVA before wetting (slower wetting rates) and in samples held at a greater suction (10 kPa) after initial wetting (greater inter-aggregate strength). The effects were more pronounced in the coarse-textured soil. In both coarse- and fine-textured soils, tensile strengths increased with increasing wetting rate (greatest for 100 mm/h) and extent of wetting (greater when held at near-saturated conditions). The rate of wetting was found to be somewhat more important for promoting aggregate coalescence than the extent of wetting. Because aggregate coalescence often occurs with little or no increase in bulk density, an explanation for the increase in penetrometer resistance and tensile strength is unlikely to be explained by a large increase in the number of inter-aggregate contacts. An increase in the strength of existing points of inter-aggregate contact was therefore considered in this work. For inter-aggregate bond strengths to increase, it was hypothesized that small increases in the amount of mechanically (or spontaneously) dispersed clay particles, and subsequent deposition at inter-aggregate contact points could increase aggregate coalescence as measured by penetrometer resistance and tensile strength. An experiment was devised to manipulate the amount of spontaneously dispersed clay in coarse- and fine-textured soils of high and low organic matter content. The degree of sodicity of each soil was manipulated by varying the exchangeable sodium percentage (ESP) of soil aggregates (0.5 – 2mm) above and below a nominal threshold value of 6. Dry aggregates were then packed into steel rings (as above) and subjected to wetting near saturation, then draining to a suction of 100 kPa for one week as described above. Measurements were then taken of penetrometer resistance and tensile strength, both of which were affected by ESP in different ways. In the coarse-textured soil, sodicity enhanced aggregate slaking and dispersion, which increased bulk density. While penetrometer resistance also increased, its effect on aggregate coalescence could not be separated from a simple effect of increased bulk density. Similarly, the effect of sodicity on aggregate coalescence in the fine-textured soil was confounded by the higher water contents produced by greater swelling, which produced lower-than-expected penetrometer resistance. Measurements of tensile strength were conducted on air-dry samples, and so the confounding effects of bulk density and water content were eliminated and it was found that tensile strength increased with sodicity in both coarse- and fine-textured soils. The presence of dispersed clay was therefore implicated in the development of aggregate coalescence in this work. Finally, a preliminary evaluation of how the early stages of aggregate coalescence might affect plant growth was attempted using tomatoes (Gross lisse) as a test plant. Seeds were planted in aggregates (0.5 – 4 mm) of a coarse- or fine-textured soil packed in steel rings. These were wetted at a rate of 1 mm/h to either near-saturation (for maximum coalescence) or to a suction of 10 kPa (for minimum coalescence) and held under these conditions for 24 h. All samples were then transferred to a ceramic pressure plate for drainage to 100 kPa suction for one week. Samples were then placed in a growth-cabinet held at 20C with controlled exposure to 14 h light/day. Germination of the seeds, plant height, and number and length of roots were observed. Germination of the seeds held at near-saturation in both coarse- and fine-textured soils was delayed by 24 h compared with seeds held at 10 kPa suction. Neither the number nor the length of tomato roots differed significantly between the different treatments and soils. In the coarse-textured soil, however, the total root length over a period of 14 days was somewhat greater in the uncoalesced samples than in the coalesced samples, but this difference was not statistically significant. These results suggest that aside from delaying germination, aggregate coalescence may not have a large effect on early growth of tomato plants. However, this is not to say that detrimental effects may not be manifest at later stages of plant growth, and this certainly needs to be evaluated, particularly because aggregate coalescence increase with repeated cycles of wetting and draining. In conclusion, the primary findings of the work undertaken in this thesis were: • Rapid wetting of soil aggregates to near-saturation enhanced the onset of soil aggregate coalescence as measured by (in some cases) penetrometer resistance at a soil water suction of 100 kPa, and (in most cases) tensile strength of soil cores in the air-dry state. The rate of wetting appeared to be more important in bringing on aggregate coalescence than how wet the soil eventually became during wetting. This means reducing the rate at which irrigation water is applied to soils may reduce the onset of aggregate coalescence more effectively than controlling the total amount of water applied – though both are important. The literature reports that aggregate coalescence occurs in the field over periods of up to several months, involving multiple wetting and draining cycles, but the work here demonstrated that this can occur over much shorter time periods depending on conditions imposed. • Aggregate coalescence occurred in coarse-textured soils regardless of whether the bulk density increased during wetting and draining. In finer-textured soils, the response to wetting conditions varied and was complicated by changes in bulk density and water content due to swelling. • Small overburden pressures enhanced the onset of aggregate coalescence, but these effects were diminished in the presence of high soil organic matter contents. • Finer aggregate size distributions (which are often produced in the field by excessive tillage during seedbed preparation) invariably led to greater aggregate coalescence than coarser aggregate size distributions. The effects of aggregate size were mitigated to some extent by higher contents of soil organic matter. • Sodicity enhanced aggregate coalescence as measured by tensile strength, but when penetrometer resistance was measured in the moist state, the effects were masked to some extent by higher water contents generated by swelling and dispersion. This work suggests that tensile strength (in the air dry state) may be a more effective measure of aggregate coalescence than penetrometer resistance. • Early plant response to aggregate coalescence was not large, but the response may become magnified during later stages of growth. / http://proxy.library.adelaide.edu.au/login?url= http://library.adelaide.edu.au/cgi-bin/Pwebrecon.cgi?BBID=1297583 / Thesis (Ph.D.) -- School of Earth and Environmental Sciences, 2007
240

Experimental investigation and constitutive modelling of thermo-hydro-mechanical coupling in unsaturated soils.

Uchaipichat, Anuchit, Civil & Environmental Engineering, Faculty of Engineering, UNSW January 2005 (has links)
A thermo-elastic-plastic model for unsaturated soils has been presented based on the effective stress principle considering the thermo-mechanical and suction coupling effects. The thermo-elastic-plastic constitutive equations for stress-strain relations of the solid skeleton and changes in fluid content and entropy for unsaturated soils have been established. A plasticity model is derived from energy considerations. The model derived covers both associative and non-associative flow behaviours and the modified Cam-Clay is considered as a special case. All model coefficients are identified in terms of measurable parameters. To verify the proposed model, an experimental program has been developed. A series of controlled laboratory tests were carried out on a compacted silt sample using a triaxial equipment modified for testing unsaturated soils at elevated temperatures. Imageprocessing technique was used for measuring the volume change of the samples subjected to mechanical, thermal and hydric loading. It is shown that the effective critical state parameters M, ???? and ???? are independent of temperature and matric suction. Nevertheless, the shape of loading collapse (LC) curve was affected by temperature and suction. Furthermore, the temperature change affected the soil water characteristic curve and an increase in temperature caused a decrease in the air entry suction. The simulations from the proposed model are compared with the experimental results. The model calibration was performed to extract the model parameters from the experimental results. Good agreement between the results predicted using the proposed model and the experimental results was obtained in all cases.

Page generated in 0.1063 seconds