• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 68
  • 6
  • 5
  • 4
  • 4
  • 1
  • Tagged with
  • 110
  • 110
  • 27
  • 26
  • 25
  • 24
  • 19
  • 12
  • 12
  • 12
  • 12
  • 12
  • 11
  • 11
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Solar-wind heating of asteroids.

Briggs, Peter Laurence January 1976 (has links)
Thesis. 1976. M.S.--Massachusetts Institute of Technology. Dept. of Earth and Planetary Sciences. / Microfiche copy available in Archives and Science. / Bibliography: leaves 60-63. / M.S.
22

Wave-particle interactions and the dynamics of the solar wind.

Goodrich, Charles Carson January 1978 (has links)
Thesis. 1978. Ph.D.--Massachusetts Institute of Technology. Dept. of Physics. / MICROFICHE COPY AVAILABLE IN ARCHIVES AND SCIENCE. / Bibliography: leaves 90-91. / Ph.D.
23

The kinetic plasma physics of solar wind turbulence

Klein, Kristopher Gregory 01 December 2013 (has links)
As means of investigating the various mechanisms which contribute to the persistence of magnetized turbulence in the solar wind, this dissertation details the development of tools through which turbulence theories can be directly compared to in situ observations. This comparison is achieved though the construction of synthetic spacecraft time series from spectra of randomly phased linear eigenmodes. A broad overview of the current understanding of plasma turbulence through analytic theory, spacecraft observation, and numerical simulation is presented with particular emphasis on previous uses of linear eigenmode characteristics in the literature. An analytic treatment of relevant fluid and kinetic linear waves follows, providing motivation for the choice of three eigenmode characteristics for studying solar wind turbulence in this dissertation. The novel synthetic spacecraft time series method is next detailed and its use in describing magnetized turbulence justified. The three metrics are then individually employed as a means of comparing the turbulence models used to generate synthetic time series with in situ observations. These comparisons provide useful constraints on various proposed mechanisms for sustaining the turbulence cascade and heating the solar wind plasma.
24

Ionospheric influence on the global characteristics of electron precipitation during auroral substorms /

Chua, Damien Han. January 2002 (has links)
Thesis (Ph. D.)--University of Washington, 2002. / Vita. Includes bibliographical references (p. 108-119).
25

Charge exchange laboratory studies relevant to solar-wind-induced cometary and planetary x-ray emission /

Eissa, Farhat. January 2007 (has links)
Thesis (Ph. D.)--University of Nevada, Reno, 2007. / Includes bibliographical references (leaves 95-99). Library also has microfilm. Ann Arbor, Mich. : ProQuest Information and Learning Company, [2008]. 1 microfilm reel ; 35 mm. Online version available on the World Wide Web.
26

Solar Wind Sodium and Potassium Abundance Analysis in Genesis Diamond-on-Silicon and Silicon Bulk Solar Wind Collectors, and How Hydration Affects the Microtexture of Olivine Phase Transformation at 18 GPa

January 2015 (has links)
abstract: The present work covers two distinct microanalytical studies that address issues in planetary materials: (1) Genesis Na and K solar wind (SW) measurements, and (2) the effect of water on high-pressure olivine phase transformations. NASA’s Genesis mission collected SW samples for terrestrial analysis to create a baseline of solar chemical abundances based on direct measurement of solar material. Traditionally, solar abundances are estimated using spectroscopic or meteoritic data. This study measured bulk SW Na and K in two different Genesis SW collector materials (diamond-like carbon (DlC) and silicon) for comparison with these other solar references. Novel techniques were developed for Genesis DlC analysis. Solar wind Na fluence measurements derived from backside depth profiling are generally lower in DlC than Si, despite the use of internal standards. Nevertheless, relative to Mg, the average SW Na and K abundances measured in Genesis wafers are in agreement with solar photospheric and CI chondrite abundances, and with other SW elements with low first ionization potential (within error). The average Genesis SW Na and K fluences are 1.01e11 (+9e09, -2e10) atoms/cm2 and 5.1e09 (+8e08, -8e08) atoms/cm2, respectively. The errors reflect average systematic errors. Results have implications for (1) SW formation models, (2) cosmochemistry based on solar material rather than photospheric measurements or meteorites, and (3) the accurate measurement of solar wind ion abundances in Genesis collectors, particularly DlC and Si. Deep focus earthquakes have been attributed to rapid transformation of metastable olivine within the mantle transition zone (MTZ). However, the presence of H2O acts to overcome metastability, promoting phase transformation in olivine, so olivine must be relatively anhydrous (<75 ppmw) to remain metastable to depth. A microtextural analysis of olivine phase transformation products was conducted to test the feasibility for subducting olivine to persist metastably to the MTZ. Transformation (as intracrystalline or rim nucleation) shifts from ringwoodite to ringwoodite-wadsleyite nucleation with decreasing H2O content within olivine grains. To provide accurate predictions for olivine metastability at depth, olivine transformation models must reflect how changing H2O distributions lead to complex changes in strain and reaction rates within different parts of a transforming olivine grain. / Dissertation/Thesis / Doctoral Dissertation Geological Sciences 2015
27

Asymmetry of the heliospheric magnetic field

Virtanen, . I. ( Ilpo) 29 October 2013 (has links)
Abstract This thesis studies the structure and evolution of the large scale heliospheric magnetic field. The work covers the space age, the period when satellite measurements revolutionized our knowledge about space. Now, this period is known to be the declining phase of the grand modern maximum of solar activity. The thesis addresses how the hemispherical asymmetry of solar activity is seen in the photospheric magnetic field and how it appears in the corona and in the heliosphere until the termination shock. According to geomagnetic and heliospheric observations, the heliospheric current sheet has been southward shifted around the solar minima since 1930s. Using Ulysses probe observations, we derive an accurate estimate of 2° for the southward shift of the heliospheric current sheet during two very different solar minimum in the mid 1990s and 2000s. The overall structure of the heliospheric magnetic field has changed significantly now when the grand modern maximum has come to an end. During the present low solar activity the polar fields are weaker and the heliospheric current sheet covered a wide latitudinal range during the previous minimum. When the heliospheric current sheet is wide the asymmetry is less visible at the Earth’s orbit. We extend our study to the outer heliosphere using measurements made by Voyager and Pioneer probes and show that the hemispherical asymmetry in the coronal hole evolution, and the related southward shift of the heliospheric current sheet, are seen until the termination shock. In order to understand the origin of the hemispherical asymmetry, we complete a multipole analysis of the solar magnetic field since 1976. We find that the minimum time southward shift of the heliospheric current sheet is due to the quadrupole component of the coronal magnetic field. The quadrupole term exists because the generation and transport of the magnetic flux in the Sun tends to proceed differently in the northern and southern hemispheres. During this and the following decade the Sun is most likely going to be less active than it has been since 1920s. Therefore it is probable that the hemispherical asymmetry of the heliospheric magnetic field will be less visible in the ecliptic plane in the near future. Now, when the Sun seems to be at the maximum of cycle 24, we are looking forward to see how the polar fields and the heliospheric magnetic field are formed when approaching the following solar minimum. It is possible that, as the activity rises again after the present and future low cycles, the hemispherical asymmetry will be opposite to that of the 20th century and the minimum time heliospheric current sheet would be northward shifted.
28

A Zone of Preferential Ion Heating Extends Tens of Solar Radii from the Sun

Kasper, J. C., Klein, K. G., Weber, T., Maksimovic, M., Zaslavsky, A., Bale, S. D., Maruca, B. A., Stevens, M. L., Case, A. W. 07 November 2017 (has links)
The extreme temperatures and nonthermal nature of the solar corona and solar wind arise from an unidentified physical mechanism that preferentially heats certain ion species relative to others. Spectroscopic indicators of unequal temperatures commence within a fraction of a solar radius above the surface of the Sun, but the outer reach of this mechanism has yet to be determined. Here we present an empirical procedure for combining interplanetary solar wind measurements and a modeled energy equation including Coulomb relaxation to solve for the typical outer boundary of this zone of preferential heating. Applied to two decades of observations by the Wind spacecraft, our results are consistent with preferential heating being active in a zone extending from the transition region in the lower corona to an outer boundary 20-40 solar radii from the Sun, producing a steady-state super-massproportional a-to-proton temperature ratio of 5.2-5.3. Preferential ion heating continues far beyond the transition region and is important for the evolution of both the outer corona and the solar wind. The outer boundary of this zone is well below the orbits of spacecraft at 1 au and even closer missions such as Helios and MESSENGER, meaning it is likely that no existing mission has directly observed intense preferential heating, just residual signatures. We predict that the Parker Solar Probe will be the first spacecraft with a perihelion sufficiently close to the Sun to pass through the outer boundary, enter the zone of preferential heating, and directly observe the physical mechanism in action.
29

Turbulent dynamics of the solar wind / Dynamique turbulente du vent solaire

Montagud Camps, Victor 22 October 2018 (has links)
Le but de cette thèse est l'étude du développement de la turbulence dans le vent solaire entre 0.2 et 1 unité astronomique (UA) du soleil (i.e. l'orbite terrestre). L'étude est faite en résolvant numériquement les équations de la MHD après soustraction de l'écoulement moyen radial. Les deux aspects de la turbulence qui nous intéressent sont la structure 3D des spectres d’énergie et le chauffage du plasma qui résulte de la dissipation turbulente des tourbillons et couches de courant emportés par le vent. On cherche à déterminer quelles sont les conditions du plasma près du soleil qui permettent d’aboutir à ce qu'on observe à 1 UA. Un but important de mon travail est aussi de déterminer si la physique qui est présente dans les équations que j'intègre (la MHD) suffit pour arriver à reproduire ce qu'on a déjà observé dans cet intervalle de distance. Nous introduisons le contexte de notre travail dans la première partie. On y trouve les équations de base, une introduction à la turbulence, un résumé sur la physique du vent solaire et de la couronne solaire. La partie 2 sera consacrée à l'étude de l'anisotropie de la cascade turbulente, et plus précisément du spectre 3D. Dans la zone inertielle, les mesures in-situ vers 1 UA montrent des figures complexes pour ces spectres qu'on peut interpréter de plusieurs façons : nos simulations numériques permettent de lever toute ambiguïté. Plus précisément, la question est de savoir quand intervient l'axe soleil-terre, et quand intervient l'axe du champ magnétique moyen. La partie trois est centrée sur le chauffage turbulent dans les vents rapides et lents. Entre 0.3 et 1 UA, la température des protons diminue anormalement lentement, ce qui indique une source de chauffage, qu'on suppose ici être la dissipation des tourbillons et couches de courant emportés par le vent. Pour démontrer que cette hypothèse est raisonnable, nous considérons d’abord le modèle de Burgers qui est un modèle pour l'évolution d’ondes sonores. Ensuite, nous passons à l'étude du cas plus complexe d'un volume de plasma 3D. Nous examinerons les conditions initiales correspondant aux vents lents et rapides. Dans les deux cas, on adoptera des anisotropies spectrales différentes. Dans la dernière partie, nous exposerons les conclusions de notre travail et proposerons d'introduire l'anisotropie de la température dans un travail futur. / The aim of this thesis is the study of the development of turbulence in the solar wind between 0.2 and 1 astronomical unit (AU) from the Sun (i.e. Earth’s orbit). The study is done by solving the magnetohydrodynamics equations (MHD) after subtracting the mean radial flow. The two aspects of turbulence that interest us are the 3D structure of the energy spectra and the heating of plasma that results from the turbulent dissipation of eddies and current layers transported by the wind. We want to determine which conditions of the plasma close to the Sun can result into what we observe at 1 AU. We have relatively detailed measurements of what happens between 0.3 and 1 AU. One important goal of this work is to determine if the physics present in the equations that are integrated (MHD) is sufficient to reproduce what is observed in this interval of distances. We introduce the context of our work in the first part. We give a summary of the physics concerning the solar wind and the solar corona, and the basic equations used to describe the solar wind plasma and an introduction to turbulence. Part 2 is dedicated to the study of anisotropy in the turbulent cascade, which characterizes 3D spectra. In the inertial range, in-situ measurements at 1 AU show complex figures for these spectra that we can interpret in several ways : numerical simulations allow to clear ambiguities. An important question is to know whether the Earth-Sun symmetry axis or the mean magnetic field axis is dominant.The third part focuses on turbulent heating in fast and slow winds. Between 0.3 and 1 AU, proton temperature decreases more slowly than expected, which requires a heating source. This source is supposed to be the continuous dissipation of eddies and current layers transported by the wind. To start with, we consider the simple case of Burgers equation, which is a one-dimensional model for shock formation. Thereupon, we switch to the 3-dimensional case, where we consider initial conditions appropriate for slow and fast winds. In the last part we expose our conclusions and propose the implementation of temperature anisotropy as future work.
30

Using hydrogen energetic neutral atoms to study the heliosphere

Kornbleuth, Marc Zachary 07 February 2021 (has links)
The interaction between the solar wind and the partially ionized gas of the local interstellar medium (ISM) creates a bubble known as the heliosphere. Classically, the shape of the heliosphere has been regarded as comet-like, with a long tail pointed in the direction opposite the Sun’s motion through the ISM. In this view, the solar magnetic field was assumed to have a negligible effect on the global structure of the heliosphere. Recent advances in numerical modeling have revealed the importance of the solar magnetic field in its ability to confine and collimate the solar wind plasma, and the shape of the heliosphere has been called into question. Energetic neutral atoms (ENAs) are created throughout the heliosphere via charge exchange. The separate contributions of the solar magnetic field topology and the solar wind structure to ENA observations is largely unexplored. The Interstellar Boundary Explorer (IBEX) has been providing a global perspective of the heliosphere through ENA maps with energies ranging from 0.2 to 6 keV. In this dissertation, three-dimensional magnetohydrodynamic simulations of the heliosphere are used as input to an ENA model designed to produce synthetic ENA maps. I compare modeled ENA maps with IBEX observations to investigate how different heliospheric conditions and properties affect ENAs created in the heliosphere, and therefore how ENA observations can be used to understand the heliosphere. First, I investigate the effect of the solar wind collimation by the solar magnetic field on ENA maps in the case of a solar wind without latitudinal variation. I find that even in the absence of variations of the solar wind, two lobes of strong ENA flux form at high latitudes, similar to what is observed by IBEX at high energies. Second, I test the effect of a latitudinally-varying solar wind on ENAs both with and without the inclusion of the solar magnetic field. I show that the latitudinal variations of the solar wind during solar minimum creates a structured ENA profile with latitude, corresponding to the profile observed at 1 AU, but that the solar magnetic field significantly enhances ENA flux in the region where the solar wind is confined. Lastly, I investigate the effect of the solar cycle on ENAs and how changing solar wind conditions (e.g. density, temperature, velocity) affect the heliosphere over time. I demonstrate that, given changes in the solar cycle, there is a significant evolution in the modeled ENA flux due to the changes in the solar wind profile and the solar magnetic field, which is also seen by ENA observations.

Page generated in 0.0627 seconds