• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 68
  • 19
  • 9
  • 5
  • 4
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 133
  • 133
  • 83
  • 67
  • 43
  • 42
  • 37
  • 24
  • 19
  • 19
  • 16
  • 15
  • 14
  • 14
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Turbulent structure and decay in a model I.C. engine

Selim, Mohamed Younes El-Saghir January 1992 (has links)
No description available.
2

A study of mixture formation in a lean burn research engine using laser fluorescence imaging

Berckmuller, Martin January 1996 (has links)
Lean burn in spark-ignition engines offers a significant efficiency advantage compared with stoichiometric operation. The lean operation is restricted by increasing cyclic fluctuation in torque. In order to make use of the efficiency advantage and meet the mandatory emission standards the lean operation limit has to be further extended. This requires particular control of the mixing of fuel and air. To study the effect of mixture formation on cyclic variability and to provide quantitative information on the mixing of air and fuel planar laser-induced fluorescence (PLIF) was developed and applied to an operating SI engine. The method is based on imaging the fluorescence of a fluorescent marker (3-pentanone) mixed with the fuel (iso-octane). 3-pentanone was found to have similar vaporisation characteristics to those of iso-octane as well as low absorption and suitable spectral properties. The technique was applied to an one-cylinder SI engine with a cylinder head configuration based on the Honda VTEC-E lean burn system. The mixture formation process during the inlet and compression stroke could be described by measuring the average fuel concentration in four planes, between 0.7 and 15.2 mm below the spark plug, in a section of the cylinder orthogonal to the cylinder axis. The results showed that for 4-valve pent-roof cylinder head systems with swirl inlet flows, fuel impinging on the cylinder wall opposite to the inlet valves has a major influence on the mixture formation process. In order to quantify the cyclic variability in the mixture formation process and its contribution to cyclic variability in combustion the fuel concentration in a plane near the spark plug was measured on a large number of cycles. It could be shown, that the fuel concentration in a small region close to the spark plug has a dominating effect on the subsequent pressure development for lean mixtures. Variations in the mixture concentration in the vicinity of the spark plug contribute significantly to cyclic variations in combustion. In order to address the issue of no uniformity in residual gas concentration prior to ignition a laser induced fluorescence method was developed to measure nitric oxide (NO) concentrations in the unburned charge in the same one-cylinder research engine. Measurements of average and instantaneous NO concentrations revealed, that the residual gas is not homogeneously mixed with the air and that significant cyclic variations in the local residual gas concentration exist.
3

Optical diagnostics and combustion analysis in a gasoline direct injection engine

Ma, Hongrui January 2006 (has links)
Gasoline Direct Injection (GDI) engines work with stratified charge at part load and burn with lean mixtures in order to save fuel, whilst at full load, the fuel and air mix homogeneously for maximum power output. The higher compression ratio and the absence of throttling are two of the most significant benefits of GDI engines. The key issues facing GDI combustion include in-cylinder mixture preparation and post-combustion soot formation. This work was intended to investigate these aspects and was undertaken on a dedicated Jaguar single-cylinder optical GDI engine with a spray-guided combustion system. The spray-guided concept does not rely as much on charge motion or piston design, and can avoid wall-wetting effects so as to reduce engine emissions. Relevant engine control hardware and data acquisition equipment were commissioned. Data/image processing software was also developed to suit the measurements. A data-processing case study with data from a small two-stroke glow ignition engine has been conducted to develop a method to combine the burn rate and heat release analyses in the study of engines with premixed charge but compression ignition. Difficulties such as unknown ignition timing and polytropic index have been addressed. Results for all operating conditions have shown good correlations between the two methods. The technique of quantitative planar laser-induced fluorescence is useful for measuring 2-D fuel distribution in GDI engines. The relevant physics and literature were reviewed in depth. A multi-component fuel was designed to give reasonable co-evaporation characteristics with tracers matching different fuel fractions. The absorption and fluorescence features of each fuel component and tracer were characterised. Optimisation of hardware and signal-to-noise ratio was performed. A recirculating loop was set up for the calibration of the technique. The technique of colour-ratio pyrometry (CRP) for estimating the temperature and loading of soot was applied on the GDI engine. Critical features of the candidate CCD colour camera including its spectral response and noise behaviours were fully studied. Validation tests with reference sources together with an error analysis suggested an accuracy of ±50K within the combustion temperature range. Engine combustion images were then taken under various operating conditions. Temperature estimates were shown to be insensitive to the concentration of soot. Simulation with a thermodynamic modelling package, ISIS, was introduced for comparison with the experimental data. With careful tuning, ISIS gave outputs comparable to the CRP and proved to be a cost-effective tool to study GDI engines. High-speed combustion imaging was carried out using a CMOS camera, allowing the study of flame properties as well as crank-angle resolved CRP. By using a lens in the piston crown to give full bore optical access and appropriate image processing, the flame front could be detected reliably throughout the main combustion process.
4

Improvement and validation of a thermodynamic S.I. engine simulation code

Abdi Aghdam, Ebrahim January 2003 (has links)
This study was concerned with improvement and validation of a thermodynamic spark ignition engine simulation code developed in Leeds. Experimental validation data were generated using a central ignition, disc-shaped combustion chamber variant of a ported single-cylinder research engine with full-bore overhead optical access. These data included simultaneous measurement of cylinder pressure and flame position at different operating conditions. The engine was skip fired (fired once every five cycles), to remove residuals and ensure well defined in-cylinder fuel-air mixture for simulation. Flames were imaged using a digital camera capturing the light emitted from the flame ("natural light"). New methods were developed to process the pressure and film data. Flame pictures were processed to determine enflamed area, mean flame radius and flame centroid. Parameters were also developed to describe flame "circularity" ("shape factor") and to describe asymmetry of flame approach to the cylinder walls ("active perimeter fraction", APF). Time-base crank angle records allowed evaluation of engine speed variation within a cycle and mean engine speed for a cycle. Although generated principally for model validation, the experimental results proved interesting in their own right. Middle, slow and fast cycles were defined for each condition. Analysis of these cycles suggested that there was no correlation between the initial flame centroid displacement, its locus over the flame propagation period or the flame "shape factor" and the speed of combustion and pressure development. As the flame approached the wall, the active perimeter fraction fell in a similar manner for all the middle cycles. Substantial modifications were made to a pre-existing thermodynamic engine cycle code. Deficiencies in the blowby, heat transfer and thermodynamic aspects were corrected. An additional ("Zimont") turbulent burning velocity sub-model and a new routine for the influence of engine speed variation within a cycle were incorporated into the code. The active perimeter fraction parameter function determined in the experiments was encoded to allow for the effects of flame-wall contact on entrainment rate during the late flame propagation. A radial stratified charge model was also developed. Burned gas expansion over the flame propagation period was shown to significantly change the unburned gas charge stratification from the initial variation. Two types of initial stratification (linear and parabolic distributions, rich of the centre and lean close to the wall) were imposed. Faster combustion development was observed in both cases, c. f that for equivalent homogeneous charge. Good agreement was observed between experimental results and "Zimont model" predictions at different equivalence ratios and engine speeds. Other computations using the pre-existing Leeds K and KLe correlations gave reasonable predictions at the various engine speeds and at rich conditions; however, they yielded slower results than experimentally observed for lean conditions.
5

Engine instrumentation and data analysis for ignition system testing

Chambers, William Joseph. January 1900 (has links)
Thesis (M.S.)--West Virginia University, 1998. / Title from document title page. "December 3, 1998." Document formatted into pages; contains xii, 110 p. : ill. (some col.). Includes abstract. Includes bibliographical references (p. 63-65).
6

Parametric studies using a mathematical model of a two-stroke cycle spark ignition engine

Sathe, Vijay Vishwanath, January 1969 (has links)
Thesis (M.S.)--University of Wisconsin--Madison, 1969. / eContent provider-neutral record in process. Description based on print version record. Includes bibliographical references.
7

The design and development of the `Watt` variable compression ratio engine

Cowley, George Russell. January 1982 (has links) (PDF)
2 folded ill. in pocket Bibliography: leave 71
8

Factors in charge preparation and their effect on performance and emissions from a direct injection spark ignition engine

Alger, Terrence Francis 14 March 2011 (has links)
Not available / text
9

An investigation into the effects of variable valve actuation on combustion and emissions in an SI engine

Ghauri, Ahmar January 1999 (has links)
The work reported in this thesis was conducted to study the effects of variable valve actuation on combustion, emissions, and fuel economy in a modern design of 4-valve per cylinder SI engine. The use of statistically-based procedures for the design of experiments allowed a limited number of tests to be used to explore a wide region of each of the experimental variables. A series of steady-flow tests was conducted to assess the effects of valve lift on flow past the valves and the nature of any in-cylinder motion generated. Results from the former were incorporated into a filling and emptying model that allowed levels of trapped residuals and pumping work to be estimated for different valve strategies. The in-cylinder motion tests explored asymmetric valve lifts, that is to say where the two valves were opened by a different amount. These results allowed a pair of response surfaces to be established to model the intensity of both axial and barrel swirl within the cylinder over the range of valve lifts. Engine tests were conducted in two parts. The first explored the effects of changes in exhaust event phasing, intake event phasing, intake event duration, and peak intake valve lift. The design of the experiment allowed linear, quadratic, and interactions between the variables to be modelled using regression analysis. Statistical analysis allowed the most influential factors (both main effects and interactions) to be identified. Contour plots of the modelled response were used to draw conclusions about the nature of the response surface and to isolate the effects of valve opening and closure angles as well as overlap. The results were correlated with those from the steady-flow tests and from the computer model. The strategy for the second phase of tests was chosen after considering the previous results. The steady-flow tests indicated that there was considerable potential for enhancing in-cylinder motion by adopting a valve deactivation strategy and combining it with a low lift of the active intake valve. The second phase investigated the use of such a technique in conjunction with large overlaps over a range of duration of the intake valve event. The results from both phases of engine tests indicated possible strategies to reduce emissions from future engines.
10

The simulation of a two cycle, crankcase scavenged, spark ignition engine on a digital computer and comparison of results with experimental data

Krieger, Roger B. January 1900 (has links)
Thesis (Ph. D.)--University of Wisconsin--Madison, 1968. / Typescript. Vita. eContent provider-neutral record in process. Description based on print version record. Includes bibliographical references.

Page generated in 0.0327 seconds