• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 26
  • 5
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 47
  • 47
  • 47
  • 11
  • 10
  • 10
  • 8
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A graphical preprocessing interface for non-conforming spectral element solvers

Kim, Bo Hung 02 June 2009 (has links)
A graphical preprocessor for Spectral Element Method (SEM) is developed with an emphasis on user friendly graphical interface and instructive element construction. The interface of the preprocessor helps users with every step during mesh generation, aiding their understanding of SEM. This preprocessor's Graphical User Interface (GUI) and help system are comparable to other commercial tools. Moreover, this preprocessor is designed for educational purposes, and prior knowledge of Spectral Element formulation is not required to use this tool. The information window in the preprocessor shows stepby- step instructions for the user. The preprocessor provides a graphical interface which enables visualization while the mesh is being constructed, so that the entire domain can be discretized easily. In addition, by following informative steps during the mesh construction, the user can gain knowledge about the intricate details of computational fluid dynamics. This preprocessor provides a convenient way to implement h/p type nonconforming interfaces between elements. This aids the user in learning advanced numerical discretization techniques, such as the h/p nonconforming SEM. Using the preprocessor facilitates enhanced understanding of SEM, isoparametric mapping, h and p type nonconforming interfaces, and spectral convergence. For advanced users, this preprocessor provides a proficient and convenient graphical interface independent of the solvers. Any spectral element solver can utilize this preprocessor, by reading the format of the output file from the preprocessor. Given these features, this preprocessor is useful both for novice and advanced users.
Read more
2

Spectral Element Method Simulation of Linear and Nonlinear Electromagnetic Field in Semiconductor Nanostructures

Luo, Ma January 2013 (has links)
<p>In this dissertation, the spectral element method is developed to simulate electromagnetic field in nano-structure consisting of dielectric, metal or semiconductor. The spectral element method is a special kind of high order finite element method, which has spectral accuracy. When the order of the basis function increases, the accuracy increases exponentially. The goal of this dissertation is to implement the spectral element method to calculate the electromagnetic properties of various semiconductor nano-structures, including photonic crystal, photonic crystal slab, finite size photonic crystal block, nano dielectric sphere. The linear electromagnetic characteristics, such as band structure and scattering properties, can be calculated by this method with high accuracy. In addition, I have explored the application of the spectral element method in nonlinear and quantum optics. The effort will focus on second harmonic generation and quantum dot nonlinear dynamics. </p><p>The electromagnetic field can be simulated in both frequency domain and time domain. Each method has different application for research and engineering. In this dissertation, the first half of the dissertation discusses the frequency domain solver, and the second half of the dissertation discusses the time domain solver.</p><p>For frequency domain simulation, the basic equation is the second order vector Helmholtz equation of the electric field. This method is implemented to calculate the band structure of photonic crystals consisting of dielectric material as well as metallic materials. Because the photonic crystal is periodic, only one unit cell need to be simulated in the computational domain, and a periodic boundary condition is applied. The spectral accuracy is inspected. Adding the radiation boundary condition at top and bottom of the computational region, the scattering properties of photonic crystal slab can be calculated. For multiple layers photonic crystal slab, the block-Thomas algorithm is used to increase the efficiency of the calculation. When the simulated photonic crystals are finite size, unlike an infinitely periodic system, the periodic boundary condition does not apply. In order to increase the efficiency of the simulation, the domain decomposition method is implemented. </p><p>The second harmonic generation, which is a kind of nonlinear optical effect, is simulated by the spectral element method. The vector Helmholtz equations of multiple frequencies are solved in parallel and the consistence solution with nonlinear effect is obtained by iterative solver. The sensitivity of the second harmonic generation to the thickness of each layer can be calculated by taking the analytical differential of the equation to the thickness of each element. </p><p>The quantum dot dynamics in semiconductor are described by the Maxwell-Bloch equations. The frequency domain Maxwell-Bloch equations are deduced. The spectral element method is used to solve these equations to inspect the steady state quantum dot dynamic behaviors under the continuous wave electromagnetic excitation.</p><p>For time domain simulation, the first order curl equations in Maxwell equations are the basic equations. A spectral element method based on brick element is implemented to simulate a nano-structure consisting of woodpile photonic crystal. The resonance of a micro-cavity consisting of a point defect in the woodpile photonic crystal block is simulated. In addition, the time domain Maxwell-Bloch equations are implemented in the solver. The spontaneous emission process of quantum dot in the micro-cavity is inspected. </p><p>Another effort is to implement the Maxwell-Bloch equations in a previously implemented domain decomposition spectral element/finite element time domain solver. The solver can handle unstructured mesh, which can simulate complicated structure. The time dependent dynamics of a quantum dot in the middle of a nano-sphere are investigated by this implementation. The population inversion under continuous and pulse excitation is investigated. </p><p>In conclusion, the spectral element method is implemented for frequency domain and time domain solvers. High efficient and accurate solutions for multiple layers nano-structures are obtained. The solvers can be applied to design nano-structures, such as photonic crystal slab resonators, and nano-scale semiconductor lasers.</p> / Dissertation
Read more
3

Theoretical and numerical studies of chaotic mixing

Kim, Ho Jun 10 October 2008 (has links)
Theoretical and numerical studies of chaotic mixing are performed to circumvent the difficulties of efficient mixing, which come from the lack of turbulence in microfluidic devices. In order to carry out efficient and accurate parametric studies and to identify a fully chaotic state, a spectral element algorithm for solution of the incompressible Navier-Stokes and species transport equations is developed. Using Taylor series expansions in time marching, the new algorithm employs an algebraic factorization scheme on multi-dimensional staggered spectral element grids, and extends classical conforming Galerkin formulations to nonconforming spectral elements. Lagrangian particle tracking methods are utilized to study particle dispersion in the mixing device using spectral element and fourth order Runge-Kutta discretizations in space and time, respectively. Comparative studies of five different techniques commonly employed to identify the chaotic strength and mixing efficiency in microfluidic systems are presented to demonstrate the competitive advantages and shortcomings of each method. These are the stirring index based on the box counting method, Poincare sections, finite time Lyapunov exponents, the probability density function of the stretching field, and mixing index inverse, based on the standard deviation of scalar species distribution. Series of numerical simulations are performed by varying the Peclet number (Pe) at fixed kinematic conditions. The mixing length (lm) is characterized as function of the Pe number, and lm ∝ ln(Pe) scaling is demonstrated for fully chaotic cases. Employing the aforementioned techniques, optimum kinematic conditions and the actuation frequency of the stirrer that result in the highest mixing/stirring efficiency are identified in a zeta potential patterned straight micro channel, where a continuous flow is generated by superposition of a steady pressure driven flow and time periodic electroosmotic flow induced by a stream-wise AC electric field. Finally, it is shown that the invariant manifold of hyperbolic periodic point determines the geometry of fast mixing zones in oscillatory flows in two-dimensional cavity.
Read more
4

Nonconforming formulations with spectral element methods

Sert, Cuneyt 15 November 2004 (has links)
A spectral element algorithm for solution of the incompressible Navier-Stokes and heat transfer equations is developed, with an emphasis on extending the classical conforming Galerkin formulations to nonconforming spectral elements. The new algorithm employs both the Constrained Approximation Method (CAM), and the Mortar Element Method (MEM) for p-and h-type nonconforming elements. Detailed descriptions, and formulation steps for both methods, as well as the performance comparisons between CAM and MEM, are presented. This study fills an important gap in the literature by providing a detailed explanation for treatment of p-and h-type nonconforming interfaces. A comparative eigenvalue spectrum analysis of diffusion and convection operators is provided for CAM and MEM. Effects of consistency errors due to the nonconforming formulations on the convergence of steady and time dependent problems are studied in detail. Incompressible flow solvers that can utilize these nonconforming formulations on both p- and h-type nonconforming grids are developed and validated. Engineering use of the developed solvers are demonstrated by detailed parametric analyses of oscillatory flow forced convection heat transfer in two-dimensional channels.
Read more
5

Spectral Integral Method and Spectral Element Method Domain Decomposition Method for Electromagnetic Field Analysis

Lin, Yun January 2011 (has links)
<p>In this work, we proposed a spectral integral method (SIM)-spectral element method (SEM)- finite element method (FEM) domain decomposition method (DDM) for solving inhomogeneous multi-scale problems. The proposed SIM-SEM-FEM domain decomposition algorithm can efficiently handle problems with multi-scale structures, </p><p>by using FEM to model electrically small sub-domains and using SEM to model electrically large and smooth sub-domains. The SIM is utilized as an efficient boundary condition. This combination can reduce the total number of elements used in solving multi-scale problems, thus it is more efficient than conventional FEM or conventional FEM domain decomposition method. Another merit of the proposed method is that it is capable of handling arbitrary non-conforming elements. Both geometry modeling and mesh generation are totally independent for different sub-domains, thus the geometry modeling and mesh generation are highly flexible for the proposed SEM-FEM domain decomposition method. As a result, the proposed SIM-SEM-FEM DDM algorithm is very suitable for solving inhomogeneous multi-scale problems.</p> / Dissertation
6

Spectral (h-p) Element Methods Approach To The Solution Of Poisson And Helmholtz Equations Using Matlab

Maral, Tugrul 01 December 2006 (has links) (PDF)
A spectral element solver program using MATLAB is written for the solution of Poisson and Helmholtz equations. The accuracy of spectral methods (p-type high order) and the geometric flexibility of the low-order h-type finite elements are combined in spectral element methods. Rectangular elements are used to solve Poisson and Helmholtz equations with Dirichlet and Neumann boundary conditions which are homogeneous or non homogeneous. Robin (mixed) boundary conditions are also implemented. Poisson equation is also solved by discretising the domain with curvilinear quadrilateral elements so that the accuracy of both isoparametric quadrilateral and rectangular element stiffness matrices and element mass matrices are tested. Quadrilateral elements are used to obtain the stream functions of the inviscid flow around a cylinder problem. Nonhomogeneous Neumann boundary conditions are imposed to the quadrilateral element stiffness matrix to solve the velocity potentials.
7

Development Of An Incompressible, Laminar Flowsolver Based On Least Squares Spectral Element Methodwith P-type Adaptive Refinement Capabilities

Ozcelikkale, Altug 01 June 2010 (has links) (PDF)
The aim of this thesis is to develop a flow solver that has the ability to obtain an accurate numerical solution fast and efficiently with minimum user intervention. In this study, a two-dimensional viscous, laminar, incompressible flow solver based on Least-Squares Spectral Element Method (LSSEM) is developed. The LSSEM flow solver can work on hp-type nonconforming grids and can perform p-type adaptive refinement. Several benchmark problems are solved in order to validate the solver and successful results are obtained. In particular, it is demonstrated that p-type adaptive refinement on hp-type non-conforming grids can be used to improve the quality of the solution. Moreover, it is found that mass conservation performance of LSSEM can be enhanced by using p-type adaptive refinement strategies while keeping computational costs reasonable.
8

Nonconforming formulations with spectral element methods

Sert, Cuneyt 15 November 2004 (has links)
A spectral element algorithm for solution of the incompressible Navier-Stokes and heat transfer equations is developed, with an emphasis on extending the classical conforming Galerkin formulations to nonconforming spectral elements. The new algorithm employs both the Constrained Approximation Method (CAM), and the Mortar Element Method (MEM) for p-and h-type nonconforming elements. Detailed descriptions, and formulation steps for both methods, as well as the performance comparisons between CAM and MEM, are presented. This study fills an important gap in the literature by providing a detailed explanation for treatment of p-and h-type nonconforming interfaces. A comparative eigenvalue spectrum analysis of diffusion and convection operators is provided for CAM and MEM. Effects of consistency errors due to the nonconforming formulations on the convergence of steady and time dependent problems are studied in detail. Incompressible flow solvers that can utilize these nonconforming formulations on both p- and h-type nonconforming grids are developed and validated. Engineering use of the developed solvers are demonstrated by detailed parametric analyses of oscillatory flow forced convection heat transfer in two-dimensional channels.
Read more
9

Numerical simulation of electrokinetically driven micro flows

Hahm, Jungyoon 01 November 2005 (has links)
Spectral element based numerical solvers are developed to simulate electrokinetically driven flows for micro-fluidic applications. Based on these numerical solvers, basic phenomena and devices for electrokinetic applications in micro and nano flows are systematically studied. As a first application, flow and species transport control in a grooved micro-channel using local electrokinetic forces are studied. Locally applied electric fields, zeta potential patterned grooved surfaces, and geometry are manipulated to control mixed electroosmotic/pressure driven flow in the grooved micro-channel. The controlled flow pattern enables entrapment and release of prescribed amounts of scalar species in the grooves. As another application, hydrodynamic/ electrokinetic focusing in a micro-channel is studied. External electric field, flow rate of pressure driven flow, and geometry in the micro-channel are manipulated to obtain the focusing point, which led to determination of the electrophoretic mobility and (relative) concentration of dilute mixtures. This technique can be used to identify and detect species in dilute mixtures.
10

High-Order Moving Overlapping Grid Methodology in a Spectral Element Method

January 2016 (has links)
abstract: A moving overlapping mesh methodology that achieves spectral accuracy in space and up to second-order accuracy in time is developed for solution of unsteady incompressible flow equations in three-dimensional domains. The targeted applications are in aerospace and mechanical engineering domains and involve problems in turbomachinery, rotary aircrafts, wind turbines and others. The methodology is built within the dual-session communication framework initially developed for stationary overlapping meshes. The methodology employs semi-implicit spectral element discretization of equations in each subdomain and explicit treatment of subdomain interfaces with spectrally-accurate spatial interpolation and high-order accurate temporal extrapolation, and requires few, if any, iterations, yet maintains the global accuracy and stability of the underlying flow solver. Mesh movement is enabled through the Arbitrary Lagrangian-Eulerian formulation of the governing equations, which allows for prescription of arbitrary velocity values at discrete mesh points. The stationary and moving overlapping mesh methodologies are thoroughly validated using two- and three-dimensional benchmark problems in laminar and turbulent flows. The spatial and temporal global convergence, for both methods, is documented and is in agreement with the nominal order of accuracy of the underlying solver. Stationary overlapping mesh methodology was validated to assess the influence of long integration times and inflow-outflow global boundary conditions on the performance. In a turbulent benchmark of fully-developed turbulent pipe flow, the turbulent statistics are validated against the available data. Moving overlapping mesh simulations are validated on the problems of two-dimensional oscillating cylinder and a three-dimensional rotating sphere. The aerodynamic forces acting on these moving rigid bodies are determined, and all results are compared with published data. Scaling tests, with both methodologies, show near linear strong scaling, even for moderately large processor counts. The moving overlapping mesh methodology is utilized to investigate the effect of an upstream turbulent wake on a three-dimensional oscillating NACA0012 extruded airfoil. A direct numerical simulation (DNS) at Reynolds Number 44,000 is performed for steady inflow incident upon the airfoil oscillating between angle of attack 5.6 and 25 degrees with reduced frequency k=0.16. Results are contrasted with subsequent DNS of the same oscillating airfoil in a turbulent wake generated by a stationary upstream cylinder. / Dissertation/Thesis / Doctoral Dissertation Aerospace Engineering 2016
Read more

Page generated in 0.0344 seconds