• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 67
  • Tagged with
  • 67
  • 67
  • 67
  • 67
  • 67
  • 25
  • 15
  • 12
  • 12
  • 10
  • 10
  • 9
  • 7
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Approximate Factorization Using Acdi Method On Hybrid Grids And Parallelization Of The Scheme

Onay, Oguz Kaan 01 January 2013 (has links) (PDF)
In this thesis study, a fast implicit iteration scheme called Alternating Cell Directions Imp licit method is combined with Approximate Factorization scheme. This application aims to offer a mathematically well defined version of the Alternating Cell Directions Implicit Method and increase the accuracy of the iteration scheme that is being used for the numerical solutions of the partial differential equations. The iteration scheme presented here is tested using unsteady diffusion equation, Laplace equation and advection-diffusion equation. The accuracy, convergence character and the stability character of the scheme compared with suitable iteration schemes for structured and unstructured quadrilateral grids. Besides, it is shown that the proposed scheme is applicable to triangular and hybrid polygonal grids. A transonic full potential solver is generated using the current scheme. The flow around a 2-D cylinder is solved for subcritical and supercritical cases. Axi-symmetric flow around cylinder is selected as a benchmark problem since the potential flow around bodies with a blunt leading edge is a more challenging problem than slender bodies. Besides, it is shown that, the method is naturally appropriate for parallelization using shared memory approach without using domain decomposition applications. The parallelization that is performed here is partially line, partially point parallelization. T he performance of the application is presented for a 3-D unsteady diffusion problem using Cartesian cells and 2-D unsteady diffusion problem using both structured and unstructured quadrilateral cells.
2

Temperature Distribution In Power Transformers

Karadag, Rukiye 01 June 2012 (has links) (PDF)
As in all other electrical equipments it is essential to estimate the temperature distribution in transformer components in the design stage and during the operation since temperatures above thermal limits of these components might seriously damage them. Thermal models are used to predict this vital information prior to actual operations. In this study, a three dimensional model based on the Finite Element Method (FEM) is proposed to estimate the temperature distribution in the three phase, SF6 gas insulated-cooled power transformer. This model can predict the temperature distribution at the specific discredited locations in the transformer successfully.
3

Temperature Distribution In Power Transformers

Karadag, Rukiye 01 June 2012 (has links) (PDF)
As in all other electrical equipments it is essential to estimate the temperature distribution in transformer components in the design stage and during the operation since temperatures above thermal limits of these components might seriously damage them. Thermal models are used to predict this vital information prior to actual operations. In this study, a three dimensional model based on the Finite Element Method (FEM) is proposed to estimate the temperature distribution in the three phase, SF6 gas insulated-cooled power transformer. This model can predict the temperature distribution at the specific discredited locations in the transformer successfully.
4

The Dual Reciprocity Boundary Element Solutions Of Helmholtz-type Equations In Fluid Dynamics

Alsoy-akgun, Nagehan 01 February 2013 (has links) (PDF)
In this thesis, the two-dimensional, unsteady, laminar and incompressible fluid flow problems governed by partial differential equations are solved by using dual reciprocity boundary element method (DRBEM). First, the governing equations are transformed to the inhomogeneous modified Helmholtz equations, and then the fundamental solution of modified Helmholtz equation is used for obtaining boundary element method (BEM) formulation. Thus, all the terms in the equation except the modified Helmholtz operator are considered as inhomogeneity. All the inhomogeneity terms are approximated by using suitable radial basis functions, and corresponding particular solutions are derived by using the annihilator method. Transforming time dependent partial differential equations to the form of inhomogeneous modified Helmholtz equations in DRBEM application enables us to use more information from the original governing equation. These are the main original parts of the thesis. In order to obtain modified Helmholtz equation for the time dependent partial differential equations, the time derivatives are approximated at two time levels by using forward finite difference method. This also eliminates the need of another time integration scheme, and diminishes stability problems. Stream function-vorticity formulations are adopted in physical fluid dynamics problems in DRBEM by using constant elements. First, the procedure is applied to the lid-driven cavity flow and results are obtained for Reynolds number values up to $2000.$ The natural convection flow is solved for Rayleigh numbers between $10^3$ to $10^6$ when the energy equation is added to the Navier-Stokes equations. Then, double diffusive mixed convection flow problem defined in three different physical domains is solved by using the same procedure. Results are obtained for various values of Richardson and Reynolds numbers, and buoyancy ratios. Behind these, DRBEM is used for the solution of natural convection flow under a magnetic field by using two different radial basis functions for both vorticity transport and energy equations. The same problem is also solved with differential quadrature method using the form of Poisson type stream function and modified Helmholtz type vorticity and energy equations. DRBEM and DQM results are obtained for the values of Rayleigh and Hartmann numbers up to $10^6$ and $300,$ respectively, and are compared in terms of accuracy and computational cost. Finally, DRBEM is used for the solution of inverse natural convection flow under a magnetic field using the results of direct problem for the missing boundary conditions.
5

The Dual Reciprocity Boundary Element Solution Of Helmholtz-type Equations In Fluid Dynamics

Alsoy-akgun, Nagehan 01 February 2013 (has links) (PDF)
In this thesis, the two-dimensional, unsteady, laminar and incompressible fluid flow problems governed by partial differential equations are solved by using dual reciprocity boundary element method (DRBEM). First, the governing equations are transformed to the inhomogeneous modified Helmholtz equations, and then the fundamental solution of modified Helmholtz equation is used for obtaining boundary element method (BEM) formulation. Thus, all the terms in the equation except the modified Helmholtz operator are considered as inhomogeneity. All the inhomogeneity terms are approximated by using suitable radial basis functions, and corresponding particular solutions are derived by using the annihilator method. Transforming time dependent partial differential equations to the form of inhomogeneous modified Helmholtz equations in DRBEM application enables us to use more information from the original governing equation. These are the main original parts of the thesis. In order to obtain modified Helmholtz equation for the time dependent partial differential equations, the time derivatives are approximated at two time levels by using forward finite difference method. This also eliminates the need of another time integration scheme, and diminishes stability problems. Stream function-vorticity formulations are adopted in physical fluid dynamics problems in DRBEM by using constant elements. First, the procedure is applied to the lid-driven cavity flow and results are obtained for Reynolds number values up to 2000. The natural convection flow is solved for Rayleigh numbers between 10^3 to 10^6 when the energy equation is added to the Navier-Stokes equations. Then, double diffusive mixed convection flow problem defined in three different physical domains is solved by using the same procedure. Results are obtained for various values of Richardson and Reynolds numbers, and buoyancy ratios. Behind these, DRBEM is used for the solution of natural convection flow under a magnetic field by using two different radial basis functions for both vorticity transport and energy equations. The same problem is also solved with differential quadrature method using the form of Poisson type stream function and modified Helmholtz type vorticity and energy equations. DRBEM and DQM results are obtained for the values of Rayleigh and Hartmann numbers up to 10^6 and 300, respectively, and are compared in terms of accuracy and computational cost. Finally, DRBEM is used for the solution of inverse natural convection flow under a magnetic field using the results of direct problem for the missing boundary conditions.
6

Differential Quadrature Method For Time-dependent Diffusion Equation

Akman, Makbule 01 November 2003 (has links) (PDF)
This thesis presents the Differential Quadrature Method (DQM) for solving time-dependent or heat conduction problem. DQM discretizes the space derivatives giving a system of ordinary differential equations with respect to time and the fourth order Runge Kutta Method (RKM) is employed for solving this system. Stabilities of the ordinary differential equations system and RKM are considered and step sizes are arranged accordingly. The procedure is applied to several time dependent diffusion problems and the solutions are presented in terms of graphics comparing with the exact solutions. This method exhibits high accuracy and efficiency comparing to the other numerical methods.
7

Wind Farm Optimization

Sogand, Yousefbeigi 01 March 2013 (has links) (PDF)
In this thesis, a mixed integer linear program is used to formulate the optimization process of a wind farm. As a start point, a grid was superimposed into the wind farm, in which grid points represent possible wind turbine locations. During the optimization process, proximity and wind interference between wind turbines were considered in order to found the power loss of the wind farm. Power loss was analyzed by using wind interference coefficient, which is a function of wind intensity interference factor (WIIF), weibull distribution and power of the wind turbines. Two different programs / Genetic Algorithm and Lingo, were used to solve the MILP optimization formula and results were compared for different cases in the conclusion part.
8

Analysis Of Threshold Dynamics Of Epidemic Models In A Periodic Environment

Evcin, Cansu 01 February 2013 (has links) (PDF)
Threshold dynamics used to control the spread of the disease in infectious disease phenomena has an overwhelming importance and interest in mathematical epidemiology. One of the famous threshold quantity is known to be the basic reproduction ratio. Its formulation as well as computation is the main concern of infectious diseases. The aim of this thesis is to analyze the basic reproduction ratio in both autonomous and periodic systems via defining R0 as the spectral radius of the next generation operator. This thesis presents the vector host model for the diseases Dengue fever and avian influenza. As emerging of the diseases shows periodicity, systems of periodic ordinary differential equations are considered for both types of diseases. Simple implementation of the time-averaged systems gives rise to the comparison of these with the periodic systems. Thus, we investigate the occurence of the existence of underestimation or overestimation of the basic reproduction ratio in timeaveraged systems.
9

Implementation Of Different Flux Evaluation Schemes Into A Two-dimensional Euler Solver

Eraslan, Elvan 01 September 2006 (has links) (PDF)
This study investigates the accuracy and efficiency of several flux splitting methods for the compressible, two-dimensional Euler equations. Steger-Warming flux vector splitting method, Van Leer flux vector splitting method, The Advection Upstream Splitting Method (AUSM), Artificially Upstream Flux Vector Splitting Scheme (AUFS) and Roe&rsquo / s flux difference splitting schemes were implemented using the first- and second-order reconstruction methods. Limiter functions were embedded to the second-order reconstruction methods. The flux splitting methods are applied to subsonic, transonic and supersonic flows over NACA0012 airfoil, as well as subsonic, transonic and supersonic flows in a channel. The comparison of the obtained results with each other and the ones in the literature is presented. The advantages and disadvantages of each scheme among others are identified.
10

Spectral (h-p) Element Methods Approach To The Solution Of Poisson And Helmholtz Equations Using Matlab

Maral, Tugrul 01 December 2006 (has links) (PDF)
A spectral element solver program using MATLAB is written for the solution of Poisson and Helmholtz equations. The accuracy of spectral methods (p-type high order) and the geometric flexibility of the low-order h-type finite elements are combined in spectral element methods. Rectangular elements are used to solve Poisson and Helmholtz equations with Dirichlet and Neumann boundary conditions which are homogeneous or non homogeneous. Robin (mixed) boundary conditions are also implemented. Poisson equation is also solved by discretising the domain with curvilinear quadrilateral elements so that the accuracy of both isoparametric quadrilateral and rectangular element stiffness matrices and element mass matrices are tested. Quadrilateral elements are used to obtain the stream functions of the inviscid flow around a cylinder problem. Nonhomogeneous Neumann boundary conditions are imposed to the quadrilateral element stiffness matrix to solve the velocity potentials.

Page generated in 0.122 seconds