• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 165
  • 147
  • 19
  • 18
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 419
  • 419
  • 158
  • 157
  • 103
  • 71
  • 66
  • 61
  • 55
  • 50
  • 48
  • 43
  • 39
  • 38
  • 37
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Statistical Mechanics of Farey Fraction Spin Chain Models

Fiala, Jan January 2004 (has links) (PDF)
No description available.
22

The statistical aspects of Boltzmann's H-theorem

Green, C. D. January 1954 (has links)
This thesis is concerned with the consideration of the H-theorem in a statistical manner and the information that may be derived from it as to the variation with time of an isolated mechanical system, and especially the approach to equilibrium. A historical introduction is given in which it shown how the need for such a statistical approach arose, and hoy the question of the behaviour of the fluctuations about the values of H predicted by the unrestricted H-theorem became important. The type of behaviour suggested by the Ehrenfests is quoted and to verify this it is found to be necessary to consider in detail actual models. Two classical models, the urn model and the wind-wood model, are considered, and then the procedure is generalized so as to include the whole class of models of the type consisting of two groups of particles, the one group moving and interacting with the members of the second group which are fixed. The transition probabilities and the rate of change of H, and the mean time of recurrence of a fluctuation are found for these models by considering the influence of fluctuations upon the Stosszahlansatz values for the numbers of collisions. The results confirm the postulates of the Ehrenfests. In assumptions common to the statistical treatment of collision processes.
23

Alguns aspectos de sistemas finitos em mecânica estatística / Some aspects of finite systems in statistical mechanics

Roberto Henrique Schonmann 09 March 1982 (has links)
Estudamos alguns aspectos da Mecânica Estatística de sistemas com número finito de partículas. Com exceção do capítulo 1 este número de partículas é da ordem N = 108 ?, onde ? é a dimensão do sistema. Não calculamos apenas funções termodinâmicas, mas procuramos determinar conjuntos de configurações cuja probabilidade de ocorrência no Ensemble Canônico a dada temperatura seja próxima de 1. A partir daí, algumas funções termodinâmicas como calor específico e pressão são calculadas. Desenvolvemos técnicas para determinar estes conjuntos de configurações de grande probabilidade e tratamos em maior detalhe os seguintes modelos: a) gás de rede com potencial atrativo de primeiros vizinhos em 1 dimensão e baixa densidade (N3 << V, N = número de partículas, V = número de sítios na rede). b) um modelo semelhante ao \"Modelo da Gota\" de Fisher, em que partículas numa caixa podem se unir em aglomerados que se movem livremente na caixa sem graus internos de liberdade. Consideramos o modelo em 1 dimensão. c) O mesmo modelo (b) modificando o critério de distinguibilidade. d) O modelo (b) com graus de liberdade internos aos aglomerados. e) O modelo (b) num campo gravitacional uniforme. f) O modelo ferromagnético de Ising em qualquer dimensão com campo magnético externo e condições periódicas ou livres de contorno e em 1 dimensão sem campo externo e com um spin fixo e um extremo de rede. Estudamos ainda o modelo (b) no Ensemble Grã-Canônico e comparamos os resultados neste ensemble fixando o número médio de partículas com os resultados no Ensemble Canônico. / We study some aspects of the Statistical Machanics of systems with finite number of particles. With exception of chapter 1 this number of particles is of the order N = 108 ?, where ? is the dimensions f the system. We don\'t restrict ourselves to the calculation of thermo dynamical functions, instead we look for sets of configurations whose probability of occurrence in the Canonical Ensemble at given temperature is near to 1. This permits us to calculate some thermo dynamical functions like the specific heat and the pressure. Techniques to determine these sets of configurations of great probability are developed and we treat in great detail of the following models: a) A lattice gas with attractive nearest neighbor potential in 1 dimension and low density (N3 << V, N = number of particles, V = number of sites). b) A model similar to Fisher\'s \"Droplet Model\" in which particles inside a box can form clusters which move freely in the box without internal degrees of freedom. We consider the model in 1 dimension. c) The same model (b) with the distinguibility criterium modified. d) The model (b) with internal to the clusters degrees of freedom. e) The model (b) in a uniform gravitational field. f) The ferromagnetic Ising model in any dimension with external field and periodic or free boundary conditions, and in 1 dimension without external field and with one spin fixed in the value +1 in one extreme of the lattice. We study also the model (b) in the Grand-Canonical Ensemble and compare the results in this ensemble fixed the mean number of particles with the results in the Canonical Ensemble.
24

Mecânica estatística e dinâmica das fases de sólitons no 4He líquido. / Statistical mechanics and dynamics of phase solitons in liquid 4 He.

Luiz Roberto Evangelista 14 September 1988 (has links)
Apresenta-se uma teoria microscópica para as fases do hélio líquido baseada na existência de sólitons planares no fluido. O trabalho adota a interpretação de London para o gás de Bose-Einstein. E segue principalmente, o trabalho pioneiro de Ventura, que é também uma extensão, para condensados não uniformes, da Teoria de Bogoliubov para a superfluidez. Esta abordagem tem, no sóliton, sua principal faceta e na nuvem térmica e no segundo campo condensado suas principais novidades. A nuvem térmica é constituída por excitações térmicas ligadas ao sóliton. Assumimos, num primeiro momento, e como hipótese central, que a densidade da nuvem térmica é proporcional ao buraco do sóliton. Duas dinâmicas, então, são desenvolvidas: o campo médio, que dá origem ao fluído normal e a dinâmica da nuvem térmica. Essas duas dinâmicas são compatibilizadas e, por autoconsistência, desenvolve-se a Mecânica Estatística dos sólitons, no líquido. Os resultados obtidos estão em bom acordo com os resultados experimentais conhecidos. Há um calor específico com uma divergência tipo em T = 2.1 K e um gap térmico efetivo na região T = 6 - 9 K, que concorda com o gap obtido experimentalmente por espalhamento de nêutrons. A teoria é, rigorosamente, microscópica e foi aperfeiçoada, num segundo momento, com a descoberta do segundo campo condensado. Usando uma lagrangiana efetiva, construída a partir da primeira etapa dos cálculos, aperfeiçoou-se a teoria e a dinâmica sóliton/nuvem térmica pôde ser reproduzida de maneira mais apurada. O fenômeno central dessa abordagem é a condensação de um segundo campo clássico no menor estado de energia. As duas abordagens são equivalentes, mas a segunda é a mais correta e conduz, essencialmente, aos mesmos resultados. / A microscopic theory for the liquid phases of helium-4 is presented, based in the existence of planar solitons in the fluid. The work follows the Londons interpretation of the Bose-Einstein gas. Mainly, it follows the pioneer work of Ventura on superfluidity, which is also an extension for the non-uniform condensates, of the Bogoliubov theory in the subject. This approach has in the soliton its main feature and in the thermal clouds its main novelty. The thermal cloud is constituted by thermal excitations bounded to the soliton. We assume, at the first moment, and as central hypothesis, that the density of the thermal cloud is proportional to the soliton hole (which 1S related to the matter vacancy) in the soliton frame. Two dynamics are developed: the mean-field, that gives origin to the normal fluid and the dynamics of the thermal cloud excitations. These two dynamics are compatibilized and by self-consistency we build the Statistical Mechanics of the solitons in the liquid. The results so obtained are in good agreement with the know results of experiments. There 1S a specific heat with a -divergence at T=2.1 K, and a thermal gap in the range T=6-9 K, which agrees with the neutron sacattering gap. The theory is microscopic in all respects and is improved with the introduction of the second condensed field. Using an effective Lagrangian, we have perfected the theory and have reproduced the soliton/thermal cloud dynamics in a more accurate fashion. The central phenomena in this approach is the condensation of the second classical field in the lowest energy state. The two approaches are equivalent, but the second one is the more correct and gives, essentially, the same results.
25

BIFURCACOES SUCESSIVAS EM SISTEMAS DE DIMENSAO INFINITA / Bifurcations SUCCESSIVE SYSTEMS IN INFINITE DIMENSION

Cesar Rogerio de Oliveira 27 June 1984 (has links)
Com base em exemplos, nos fundamentos da Mecânica estatística e na teoria ergódiga, é dada uma definição de atrator como uma medida invariante. Vários resultados que corroboram esta definição são demostrados. Caos é relacionado à presença de um atrator com entropia métrica maior que zero. O papel dos expoentes de Lyapunov é analisado e é provado que um atrator caótica possui expoentes de Lyapunov positivos em quase todo ponto, e também que, se um atrator possui todos expoentes de Lyapunov estritamente negativos num conjunto de medida atratora maior que zero, então seu suporte é uma órbita periódica assintoticamente estável. / Here, a definition of an attractor as an invariant measure is given based on Ergodic Theory, foundations of Statistical Mechanics and some examples. Chaos is related to the presence of an attractor with metric entropy grater zero. It is proved that a chaotic attractor has positive Lyapunov exponents almost everywhere, and that, if an attractor has every Lyapunov exponents less than zero in a set of nonzero measure then the support set of the attractor is an asymptotic stable periodic orbit.
26

Studies in relaxation

Hadjipavlou, Savas January 1978 (has links)
This work concerns itself with the exact study of the dynamical properties of two model systems. After a brief summary of theory and concepts previous work is discussed, and this provides the motivation for the formulation of the first model. This quantum mechanical lattice model and some of its equilibrium properties are described in Chapter II. The dynamical problem to be studied is formulated in Chapter III; this is essentially the study of the time evolution (generated by the Hamiltonian) of a finite system at temperature T<sub>1</sub> coupled to an infinite copy of itself at a temperature T<sub>2</sub> and acting as a heat bath for the system. The problem is solved for the special case, when the coupling as scaled by the parameter &gamma;, takes the value &gamma; = 1. The general case for arbitrary &gamma; values is treated in Chapter IV. It is shown that the system approaches the equilibrium state of the heat bath in a non-exponential manner, provided the spectrum of the Hamiltonian is continuous and does not have a discrete part. This result is in complete accord with the findings of other work summarised in Chapter I. The mixing properties of the model and behaviour of the relaxation rate in the weak coupling limit are studied in Chapter V. The model is shown to fail to behave as a calorimeter and in view of this result the relevance of the concept of mixing to irreversible behaviour is discussed. The main conclusions and results for the model are summarised at the end of Chapter V. The second model discussed, was first introduced by R.J.&nbsp;Glauber to study the dynamics of the Ising chain. The main feature here is that the time evolution is defined through a Master equation, and the associated stochastic operator. It is shown in Chapter VI that exploiting fully the free fermion character of the stochastic operator for the Glauber model, it is possible to provide a simple method to the study of the dynamics of the Ising Chain.
27

Techniques and Applications of Quantum and Classical Statistical Mechanics

Michael, Fredrick N. 01 January 2002 (has links) (PDF)
Mesoscopic and nano-scale physics describe systems whose dimensions are intermediate between microscopic and macroscopic. Devices manufactured in this size range require the rethinking of electron transport physics. A powerful approach to modeling the nonlinear current-voltage characteristics observed at these scales is the non-equilibrium Green’s functions method of Schwinger, Keldysh, and Craig. In this thesis this approach is used to describe the mesoscopic conductor and spin-dependent transport in ferromagnetic metal-insulator-ferromagnetic metal and ferromagnetic metal-conductor-ferro-magnetic metal junctions. The formalism is also adapted to obtain analytical expressions for the resistance in the integer quantum Hall regime. Also presented is a new formulation of lead-barrier coupling in terms of a self-energy. Financial markets are complex random systems comprised of many interacting investors, each with their own trading strategy and outlook. The task of modeling this complex behavior is akin in complexity to the many body problems in physics. Here non-extensive statistic are used to model price changes in real markets. A risk-neutral valuation model is then derived for derivatives written on such a primary market. This yields a natural generalization of the Black-Scholes derivatives valuation model.
28

Non-equilibrium Statistical Mechanics of a Two-temperature Ising Ring With Conserved Dynamics

Borchers, Nicholas 15 June 2015 (has links)
The statistical mechanics of a one-dimensional Ising model in thermal equilibrium is well-established, textbook material. Yet, when driven far from equilibrium by coupling two sectors to two baths at different temperatures, it exhibits remarkable phenomena, including an unexpected 'freezing by heating. These phenomena are explored through systematic numerical simulations. This study reveals complicated relaxation processes as well as a crossover between two very different steady state regimes which are found to be bistable within a certain parameter range. / Ph. D.
29

Aprendizado em modelos de Markov com variáveis de estado escondidas / Learning in Hidden Markov Models

Alamino, Roberto Castro 10 November 2005 (has links)
Neste trabalho estudamos o aprendizado em uma classe específica de modelos probabilísticos conhecidos como modelos de Markov com variáveis de estado escondidas (em inglês, Hidden Markov Models ou HMMs). Primeiramente discutimos sua teoria básica e em seguida fazemos um estudo detalhado do comportamento de cinco diferentes algoritmos de aprendizado, dois deles já conhecidos na literatura e os outros três propostos por nós neste trabalho. Os cinco algoritmos estão descritos abaixo e são estudados na seqüência apresentada: Algoritmo de Baum-Welch (BW): consiste em um célebre algoritmo off-line obtido através da aplicação do algoritmo EM ao caso particular dos HMMs. Na literatura, é comum referir-se a ele pelo nome de Fórmulas de Reestimação de BaumWelch. Algoritmo de Baum-Welch On-line (BWO): versão on-line de BW proposta por nós. Algoritmo de Baldi-Chauvin (BC): algoritmo on-line proposto por Baldi e Chauvin em [5] onde uma representação do tipo softma:x é utilizada para as probabilidades dos HMMs e cujo objetivo é, a cada passo de iteração, maximizar a verossimilhança do modelo. Algoritmo Bayesiano On-line (BKL): algoritmo desenvolvido por nós baseado numa proposta de Opper [74], onde, após a atualização da distribuição de probabilidades do modelo a cada novo dado, projeta-se a densidade obtida em uma família paramétrica de distribuições tratáveis minimizando-se a distância de KullbackLeibler entre as duas. Algoritmo Posterior Média (PM): uma simplificação de BKL onde a projeção após a atualização é feita na distribuição posterior média. Para cada um dos algoritmos acima, obtemos curvas de aprendizado através de simulações onde utilizamos duas medidas distintas de erro de generalização: a distância de Kullback-Leibler (dKL) e a distância euclideana (d IND. E). Com exceção do algoritmo BW, que só pode ser utilizado em situações de aprendizado off-line, estudamos para todos os outros algoritmos as curvas de aprendizado tanto para a situação on-line quanto para a off-line. Comparamos as performances dos algoritmos entre si e discutimos os resultados obtidos mostrando que, apesar de um tempo de computação maior, o algoritmo bayesiano PM, proposto por nós, é superior aos outros algoritmos não-bayesianos quanto à generalização em situações de aprendizado estáticas e possui uma performance muito próxima do algoritmo bayesiano BKL. Fazemos, também, uma comparação entre os algoritmos PM e BC em situações de aprendizado variáveis com o tempo, com dados gerados artificialmente e em uma situação com dados reais, porém com um cenário simplificado, onde os utilizamos para prever o comportamento do índice da bolsa de valores de São Paulo (IBOVESPA), mostrando que, embora necessitem de um período longo de aprendizado, após essa fase inicial as previsões obtidas por esses algoritmos são surpreendentemente boas. Por fim, apresentamos uma discussão sobre aprendizado e quebra de simetria baseada nos estudos feitos. / In this work we study learning in a specific class of probabilistic models known as Hidden Markov Models (HMMs). First we discuss its basic theory and after we make a detailed study of the behavior of five different learning algorithms, two of them already known in the literature and the other three proposed by us in this work. The five algorithms are described below in the sequence they are presented in the thesis: Baum-Welch Algorithm(BW): consists of a renowed offline algorithm obtained by applying the EM-algorithm to the particular case of HMMs. Through the literature it is common to refer to it by the name Baum-Welch Reestimation Formulas. Baum-Welch Online Algorithm (BWO): online version of BW proposed by us. Baldi-Chauvin Algorithm (BC): online algorithm proposed by Baldi and Chauvin in [5] where a softmax representation for the probabilities of the HMMs is used and where the aim is to maximize the model likelihood at each iteration step. Online Bayesian Algorithm (BKL): an algorithm developed by us based on the work of Opper [74] where, after updating the probability distribution of the model with each new data, the obtained density is projected into a parametric family of tractable distributions minimizing the Kullback-Leibler distance between both. Mean Posterior Algorithm (PM): a simplification of BKL where the projection after the update is made on the mean posterior distribution. For each one of the above algorithms, we obtain learning curves by means of simulations where we use two distinct measures of generalization error: the Kullback-Leibler distance (dKL) and the Euclidian distance (dE). With exception of the BW algorithm, which can be used only in offline learning situations, we study for all the other algorithms the learning curves for both learning situations: online and offiine. We compare the performance of the algorithms with one another and discuss the results showing that, besides its larger computation time, the bayesian algorithm PM, proposed by us, is superior to the other non-bayesian algorithms with respect to the generalization in static learning situations and that it has a performance that is very close to the bayesian algorithm BKL. We also make a comparison between algorithms PM and BC in learning situations that change with time using artificially generated data and in one situation with real data, with a simplified scenario, where we use them to predict the behavior of the São Paulo Stock Market Index (BOVESPA) showing that, although they need a large learning period, after that initial phase the predictions obtained by both algorithms are surprisingly good. Finally, we present a discussion about learning and symmetry breaking based on the presented studies.
30

Aprendizado em modelos de Markov com variáveis de estado escondidas / Learning in Hidden Markov Models

Roberto Castro Alamino 10 November 2005 (has links)
Neste trabalho estudamos o aprendizado em uma classe específica de modelos probabilísticos conhecidos como modelos de Markov com variáveis de estado escondidas (em inglês, Hidden Markov Models ou HMMs). Primeiramente discutimos sua teoria básica e em seguida fazemos um estudo detalhado do comportamento de cinco diferentes algoritmos de aprendizado, dois deles já conhecidos na literatura e os outros três propostos por nós neste trabalho. Os cinco algoritmos estão descritos abaixo e são estudados na seqüência apresentada: Algoritmo de Baum-Welch (BW): consiste em um célebre algoritmo off-line obtido através da aplicação do algoritmo EM ao caso particular dos HMMs. Na literatura, é comum referir-se a ele pelo nome de Fórmulas de Reestimação de BaumWelch. Algoritmo de Baum-Welch On-line (BWO): versão on-line de BW proposta por nós. Algoritmo de Baldi-Chauvin (BC): algoritmo on-line proposto por Baldi e Chauvin em [5] onde uma representação do tipo softma:x é utilizada para as probabilidades dos HMMs e cujo objetivo é, a cada passo de iteração, maximizar a verossimilhança do modelo. Algoritmo Bayesiano On-line (BKL): algoritmo desenvolvido por nós baseado numa proposta de Opper [74], onde, após a atualização da distribuição de probabilidades do modelo a cada novo dado, projeta-se a densidade obtida em uma família paramétrica de distribuições tratáveis minimizando-se a distância de KullbackLeibler entre as duas. Algoritmo Posterior Média (PM): uma simplificação de BKL onde a projeção após a atualização é feita na distribuição posterior média. Para cada um dos algoritmos acima, obtemos curvas de aprendizado através de simulações onde utilizamos duas medidas distintas de erro de generalização: a distância de Kullback-Leibler (dKL) e a distância euclideana (d IND. E). Com exceção do algoritmo BW, que só pode ser utilizado em situações de aprendizado off-line, estudamos para todos os outros algoritmos as curvas de aprendizado tanto para a situação on-line quanto para a off-line. Comparamos as performances dos algoritmos entre si e discutimos os resultados obtidos mostrando que, apesar de um tempo de computação maior, o algoritmo bayesiano PM, proposto por nós, é superior aos outros algoritmos não-bayesianos quanto à generalização em situações de aprendizado estáticas e possui uma performance muito próxima do algoritmo bayesiano BKL. Fazemos, também, uma comparação entre os algoritmos PM e BC em situações de aprendizado variáveis com o tempo, com dados gerados artificialmente e em uma situação com dados reais, porém com um cenário simplificado, onde os utilizamos para prever o comportamento do índice da bolsa de valores de São Paulo (IBOVESPA), mostrando que, embora necessitem de um período longo de aprendizado, após essa fase inicial as previsões obtidas por esses algoritmos são surpreendentemente boas. Por fim, apresentamos uma discussão sobre aprendizado e quebra de simetria baseada nos estudos feitos. / In this work we study learning in a specific class of probabilistic models known as Hidden Markov Models (HMMs). First we discuss its basic theory and after we make a detailed study of the behavior of five different learning algorithms, two of them already known in the literature and the other three proposed by us in this work. The five algorithms are described below in the sequence they are presented in the thesis: Baum-Welch Algorithm(BW): consists of a renowed offline algorithm obtained by applying the EM-algorithm to the particular case of HMMs. Through the literature it is common to refer to it by the name Baum-Welch Reestimation Formulas. Baum-Welch Online Algorithm (BWO): online version of BW proposed by us. Baldi-Chauvin Algorithm (BC): online algorithm proposed by Baldi and Chauvin in [5] where a softmax representation for the probabilities of the HMMs is used and where the aim is to maximize the model likelihood at each iteration step. Online Bayesian Algorithm (BKL): an algorithm developed by us based on the work of Opper [74] where, after updating the probability distribution of the model with each new data, the obtained density is projected into a parametric family of tractable distributions minimizing the Kullback-Leibler distance between both. Mean Posterior Algorithm (PM): a simplification of BKL where the projection after the update is made on the mean posterior distribution. For each one of the above algorithms, we obtain learning curves by means of simulations where we use two distinct measures of generalization error: the Kullback-Leibler distance (dKL) and the Euclidian distance (dE). With exception of the BW algorithm, which can be used only in offline learning situations, we study for all the other algorithms the learning curves for both learning situations: online and offiine. We compare the performance of the algorithms with one another and discuss the results showing that, besides its larger computation time, the bayesian algorithm PM, proposed by us, is superior to the other non-bayesian algorithms with respect to the generalization in static learning situations and that it has a performance that is very close to the bayesian algorithm BKL. We also make a comparison between algorithms PM and BC in learning situations that change with time using artificially generated data and in one situation with real data, with a simplified scenario, where we use them to predict the behavior of the São Paulo Stock Market Index (BOVESPA) showing that, although they need a large learning period, after that initial phase the predictions obtained by both algorithms are surprisingly good. Finally, we present a discussion about learning and symmetry breaking based on the presented studies.

Page generated in 0.0732 seconds