• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Model-based fault detection and control design - applied to a pneumatic Stewart-Gough platform

Grewal, Karmjit Singh January 2010 (has links)
The safety and functionality of engineering systems can be affected adversely by faults or wear in system components. Therefore, methods for detecting such faults/wear and ameliorating their effects to avoid system failure are important. Designing schemes for the detection and diagnosis of faults is becoming increasingly important in engineering due to the complexity of modern industrial systems and growing demands for quality, cost efficiency, reliability, and the safety issue. In safety/mission critical applications, fault detection can be combined with accommodation/reconfiguration (after a fault) to achieve fault tolerance allowing the system to complete or abort its function in a way that is sub-optimal but does achieve the design objective. This thesis discusses research carried-out on the development and validation of a model-based fault detection and isolation (FDI) system for a pneumatically actuated Stewart platform. The Stewart-Gough platform provides six degrees of freedom consisting of three translational and three rotational degrees of freedom (x, y, z, pitch, roll, & yaw). As these platforms can be fast acting (rapid motion) and can handle reasonable loads, they can become dangerous, especially when fault(s) in the platform mechanism, drivetrain or control system occur. Therefore, as a safety critical application it is imperative that fault tolerant schemes are applied in order to provide a safe working environment. The design concept of the FDI scheme for the full Stewart-Gough platform is first designed using a single cylinder set-up. This modular concept is adopted so that a robust fault tolerant control scheme can be designed basically off-line (i.e. not attached to the Stewart Gough platform). This approach is adopted as requirements are easier to understand using a single cylinder set-up. The modular design approach subdivides the whole system into smaller sections (modules) that can be independently created and then used in the complete Stewart-Gough platform. The main contributions of the work are that a pneumatically actuated Stewart-Gough platform has been designed, built, and commissioned. A mathematical model has been developed and has been validated against experimental results. Two control approaches have been designed and compared. A fundamental comparative study of parity equations and Kalman filter observer banks for fault detection in pneumatic actuators has been conducted. The parity equations and Kalman filter approaches have been extended to provide a combined fault detection scheme. The FDI and control schemes have been combined in a modular Fault Tolerant Control (FTC) scheme for a pneumatic cylinder. The resulting FTC scheme has been validated by experimentation and demonstrated on the single cylinder test rig. The FTC scheme has been extended to all 6 cylinders (and including fault management at top level) of Stewart-Gough platform. The FTC scheme has been validated by experimentation and demonstrated on the Stewart-Gough platform test rig.
2

Taylor Spatial Frame : kinematics, mechanical properties and automation

Nikonovas, Arkadijus January 2005 (has links)
The Taylor Spatial Frame (TSF) is a recently introduced form of a circular external orthopaedic fixator for long bone fracture reduction and deformity correction. The TSF is constructed from two circular rings interconnected with six variable-length struts. Its kinematics are based on the Stewart-Gough platform. The TSF is attached to the patient's anatomy using fine wires and half-pins. In this thesis, three aspects of the TSF are analysed. First, the solution to non-trivial forward and inverse kinematics has been addressed. Second, the mechanical properties of the TSF fixator are investigated. Individual component stiffness is assessed separately and then the complete fixator is modelled. Simple stiffuess models of fine wires and half-pins are derived. Considerations for the use of the TSF for the peri-articular fractures are investigated and potential modifications are proposed. The effect of backlash in the frame components on the accuracy of the fixator has been analysed. Finally, in rder to validate the kinematics solution, to provide a training aid for surgeons and to demonstrate the concept of accurately controlled interfragmentary motion, a prototype of an active TSF was designed and built. Computationally efficient algorithms for solving the forward and inverse kinematics have been developed that require little numerical processing overhead and can be implemented on a mobile computing device. It was found that the TSF fixator has similar axial stiffuess to the circular Ilizarov ring fixator, since wires and half-pins are significantly less stiff than the frames. Furthermore, the TSF exhibits more uniform stiffuess for a range of off-axis loads and is significantly stiffer for torsional loads than the Ilizarov fixator. Slack, in the form of a backlash, can lead to severe strains in the unloaded frames and therefore fractures, and hence precautions are recommended. Finally, considerations and prototype for the automated TSF are presented that can be utilised for demonstration purposes and surgeon training.
3

[en] KINEMATIC ANALYSIS OF A MOTION SIMULATOR OF SIX DEGREE OF FREEDOM, TYPE PARALLEL STRUCTURE / [pt] ANÁLISE CINEMÁTICA DE UM SIMULADOR DE MOVIMENTOS DE SEIS GRAUS DE LIBERDADE COM ESTRUTURA PARALELA

FLAVIO LUIZ VAZ VIANNA 07 November 2002 (has links)
[pt] Esta tese tem como principal objetivo o estudo do comportamento cinemático de um simulador de movimentos de 6 (seis) graus de liberdade, utilizando um novo conceito de análise computacional.Inicialmente, foi apresentado um software comercial, Working Model 3D, que teve seu desempenho matemático validado comparando-se seus resultados computacionais com os de outro software comercial, conhecido como Matlab.Foi introduzido, então, o conceito de mecanismos paralelos. Analisou-se, primeiramente, o mecanismo paralelo planar com três juntas rotacionais, conhecido como 3RRR. Foram feitas as análises cinemáticas e os estudos de algumas singularidades, apresentando-se ainda algumas recomendações para futuros trabalhos. O estudo do mecanismo paralelo usado em aplicações como simuladores de movimentos foi também apresentado, através da análise plataforma Stewart- Gough. A exeqüibilidade deste novo conceito de análise cinemática foi comprovada através de diversas simulações, incluindo o acoplamento de um objeto, representado por um chassi veicular, na plataforma. / [en] This thesis presents the kinematic behavior of a motion simulator with six degrees of freedom,using a new computational analysis approach. A well-known simulation software with proven performance, Matlab, is used to validate another software environment, Working Model 3D, which is used to develop and study kinematic models of parallel mechanisms.Planar mechanism using three rotational joints, 3RRR, are studied through kinematic analysis and some singularity studies are developed, which resulted in some suggestions for future analysis and studies. Also, an introductory study of spatial-parallel mechanisms is presented regarding motion simulators with six degrees of freedom through simulation studies of Stewart-Gough platform. The feasibility of this new kinematic analysis was proven by means of several simulations, including the coupling of a vehicular chassis in the platform modeling.

Page generated in 0.0587 seconds