• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 1
  • 1
  • Tagged with
  • 11
  • 11
  • 7
  • 7
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Šumová spektroskopie detektorů záření na bázi CdTe / The Noise Spectroscopy of Radiation Detectors Based on the CdTe

Zajaček, Jiří January 2009 (has links)
The main object of this work is noise spectroscopy of CdTe radiation detectors (-rays and X–rays) and CdTe samples. The study of stochastic phenomenon and tracing redundant low-frequency noise in semiconductor materials require long-term measurements in time domain and evaluate suitable power spectral densities (PSD) with logarithmic divided frequency axes. We have used the means of time-frequency analysis derived from the discrete wavelet transform (DWT) and we have designed the effective algorithm for PSD estimation, which is comparable with an original analog method. CdTe single crystal with Au contacts we can imagine as a series connection of two Schottky diodes with a resistor between them. The bulk resistance at constant temperature and other constant parameters changes due to the carrier concentration changing only. The p-type CdTe sample shows metal behavior with every temperature changes. Semiconductor properties of the sample begin to dominate just after some period of time. This behavior is caused by the hole mobility changing. The voltage noise spectral density of 1/f noise depends on the quantity of free carriers in the sample. All the studied samples have very high value of low frequency noise, much higher than it should have been according to Hooge’s formula. The excess value of low frequency noise is caused by the low carrier concentration within the depleted region.

Page generated in 0.0262 seconds