Spelling suggestions: "subject:"[een] SUBSIDENCE"" "subject:"[enn] SUBSIDENCE""
21 |
Characterization and modeling of land subsidence due to groundwater withdrawals from the confined aquifers of the Virginia Coastal PlainPope, Jason Philip 14 June 2002 (has links)
Measurement and analysis of aquifer-system compaction have been used to characterize aquifer and confining unit properties when other techniques such as flow modeling have been ineffective at adequately quantifying storage properties or matching historical water levels in environments experiencing land subsidence. In the southeastern Coastal Plain of Virginia, high-sensitivity borehole pipe extensometers were used to measure 24.2 mm of total compaction at Franklin from 1979 to 1995 (an average of 1.5 mm/yr) and 50.2 mm of total compaction at Suffolk from 1982 to 1995 (an average of 3.7 mm/yr). Analysis of the extensometer data reveals that the small rates of aquifer-system compaction appear to be correlated with withdrawals of water from confined aquifers. One-dimensional vertical compaction modeling indicates that the measured compaction is the result of nonrecoverable hydrodynamic consolidation of the fine-grained confining units and interbeds as well as recoverable compaction and expansion of coarse-grained aquifer units. The modeling results also provide useful information about specific storage and vertical hydraulic conductivity of individual hydrogeologic units. The results of this study enhance the understanding of the complex Coastal Plain aquifer system and will be useful in future modeling and management of ground water in this region. / Master of Science
|
22 |
Numerical modelling of inclined seamsNejad, Mehdi Afsari January 1998 (has links)
No description available.
|
23 |
Debris Flow Network Morphology and a New Erosion Rate Proxy for Steepland Basins with Application to the Oregon Coast Range and Cascadia Subduction ZonePenserini, Brian 18 August 2015 (has links)
Reaches dominated by debris flow scour and incision tend to greatly influence landscape form in steepland basins. Debris flow networks, despite their ubiquity, have not been exploited to develop erosion rate proxies. To bridge this gap, I applied a proposed empirical function that describes the variation of valley slope with drainage area in fluvial and debris flow reaches of steepland channel networks in the Oregon Coast Range. I calibrated a relationship between profile concavity and erosion rate to map spatial patterns of long-term uplift rates assuming steady state. I also estimated the magnitude and inland extent of coseismic subsidence in my study area. My estimates agree with field measurements in the same area along the Cascadia margin, indicating that debris flow valley profiles can be used to make interpretations from spatial patterns of rock uplift that may better constrain physical models of crustal deformation.
This thesis includes unpublished co-authored material.
|
24 |
SENTINEL-1A INSAR MONITORING OF SURFACE DEFORMATION IN DONNELLY TRAINING AREA, ALASKA (2015-2018)MANANDHAR, SHISHIR 01 August 2019 (has links)
The majority of high-latitude Arctic land surface is underlain by permafrost. The high degree of permafrost sensitivity from climatic as well as anthropogenic factors leads to surface deformation and changing active layer. This is typically due to thawing in warmer seasons and refreezing in colder seasons. Such changes can have significant impacts on the infrastructure and hydroecological environment. Hence, the objectives of this study aimed at identifying spatial pattern and magnitude of surface deformation (uplifting and subsidence) from 2015 to 2018 using Sentinel-1A images in an army installation – Donnelly Training Area (DTA), Alaska. To achieve the objectives, Interferometric Synthetic Aperture Radar (InSAR) method was applied to 11 descending Level-1 Single Look Complex (SLC) images in thawing seasons, spanning from 8th May 2015 to 25th September 2018 with perpendicular baseline up to ±90 m. A Digital Elevation Model (DEM) of 30 m spatial resolution was employed to remove the phase contributed by altitude, to increase the accuracy of differential interferogram and for geocoding. Multilooking, Goldstein phase filtering and phase unwrapping using Minimum Cost Flow (MCF) were conducted on the resulting phase. The unwrapped phase was converted into displacement and it was then terrain-corrected. The collocation of terrain-corrected coherence and displacement was applied followed by the extraction of displacements in the areas where coherence exceeded 0.4 and the displacement was interpolated. Wilcoxon’s signed ranked test was conducted to test if the median displacements were significantly different from zero. The results showed seasonal deformation ranging from -0.43 meter to +0.34 meters. Subsidence was commonly observed between June and July when temperature was high and, uplifting was noticed as a prominent phenomenon after July and before June due to the expansive nature of silty soil and clays. However, the secular changes from May 2015 to May 2018 showed subsidence as a major phenomenon. This could be attributed to the thawing of ice-rich permafrost underneath probably due to global warming and military training activities. Deformations in all pairs were found to be significantly different from zero. These results corroborate with deformation studies conducted in other parts of Alaska and these findings are useful to researchers, decision-makers, and planners of land management.
|
25 |
Differential interferometric synthetic aperture radar for land deformation monitoringChang, Hsing-Chung, Surveying & Spatial Information Systems, Faculty of Engineering, UNSW January 2008 (has links)
Australia is one of the leading mineral resource extraction nations in the world. It is one of the worlds top producers of nickel, zinc, uranium, lithium, coal, gold, iron ore and silver. However, the complexity of the environmental issues and the potentially damaging consequences of mining have attracted public attention and political controversy. Other types of underground natural resource exploitation, such as ground water, gas or oil extractions, also cause severe land deformation on different scales in space and time. The subsidence due to underground mining and underground fluid extractions has the potential to impact on surface and near surface infrastructure; as well as water quality and quantity, that in turn has the potential to impact on threatened flora and fauna, and biodiversity conservation. Subsidence can also impact natural and cultural heritage. To date, most of land deformation monitoring is done using conventional surveying techniques, such as total stations, levelling, GPS, etc. These surveying techniques provide high precision in height at millimetre accuracy, but with the drawbacks of inefficiency and costliness (labour intensive and time consuming) when surveying over a large area. Radar interferometry is an imaging technique for measuring geodetic information of terrain. It exploits phase information of the backscattered radar signals from the ground surface to retrieve the altitude or displacements of the objects. It has been successfully applied in the areas of cartography, geodesy, land cover characterisation, mitigation of natural or man-made hazards, etc. The goal of this dissertation was to develop a system which integrated differential interferometric synthetic aperture radar (DInSAR), ground survey data and geographic information systems (GIS) as a whole to provide the land deformation maps for underground mining and water extraction activities. This system aimed to reinforce subsidence assessment processes and avoid or mitigate potential risks to lives, infrastructure and the natural environment. The selection of suitable interferometric pairs is limited to the spatial and temporal separations of the acquired SAR images as well as the characteristics of the site, e.g. slope of terrain, land cover, climate, etc. Interferometric pairs with good coherence were selected for further DInSAR analysis. The coherence analysis of both C- and L-band spaceborne SAR data was studied for sites in the State of New South Wales, Australia. The impact of the quality of the digital elevation models (DEM), used to remove the static topography in 2-pass DInSAR, were also analysed. This dissertation examined the quality of the DEM generated using aerial photogrammetry, InSAR, and airborne laser scanning (ALS) against field survey data. Kinematic and real-time kinematic GPS were introduced here as an efficient surveying method for collecting ground truth data for DEM validation. For mine subsidence monitoring, continuous DInSAR mine subsidence maps were generated using ERS-1/2, Radarsat-1 and JERS-1 data with the assumption of negligible horizontal displacement. One of the significant findings of this study was the results from the ERS-1/2 tandem DInSAR, which showed an immediate mine subsidence of 1cm occurred during a period of 24 hours. It also raised the importance of SAR constellations for disaster mitigation. In order to understand the 3-D displacement vectors of mine deformation, this dissertation also proposed a method using the SAR data acquired at 3 independent incidence angles from both ascending and descending orbits. Another issue of the high phase gradient, induced by the mine subsidence, was also addressed. Phase gradient was clearly overcome by having the L-band ALOS data with an imaging resolution of 10m, which is better than the imaging resolution of 18m of the previous generation of the Japanese L-band SAR satellite, JERS-1. The ground survey data over a similar duration was used for validation. Besides mine subsidence monitoring the land deformation caused by groundwater pumping were also presented. In contrast to mine subsidence, the underground water extraction induced subsidence has the characteristics of a slow rate of change and less predictable location and coverage. Two case studies were presented. One was at the geothermal fields in New Zealand and another was the urban subsidence due to underground water over exploitation in China. Both studies were validated against ground survey data. Finally, SAR intensity analysis for detecting land deformation was demonstrated when DInSAR was not applicable due to strong decorrelation. The region of land surface change, which may be caused by human activities or natural disasters, can be classified. Two cases studies were given. The first study was the surface change detection at an open-cut mine. The second one was the 2004 Asian tsunami damage assessment near Banda Aceh. The results presented in this dissertation showed that the integrated system of DInSAR, GIS and ground surveys has the potential to monitor mine subsidence over a large area. The accuracy of the derived subsidence maps can be further improved by having a shorter revisit cycle and better imaging resolution of the newly launched and planned SAR satellites and constellation missions. The subsidence caused by groundwater pumping can be monitored at an accuracy of millimetre by utilising the technique of persistent scatterer InSAR.
|
26 |
Reservoir characterization using a capacitance resistance model in conjunction with geomechanical surface subsidence modelsWang, Wenli, master of science in petroleum engineering 20 February 2012 (has links)
Extraction of oil and gas can cause reduction in pore pressure, occasionally resulting in subsequent compaction that forms a surface subsidence bowl, especially in shallow reservoirs. In the last 10 years, there has been over 10 feet of subsidence in parts of the Lost Hills oil field in California (Bruno et al.,1992). The surface subsidence at Lost Hills not only causes damage to surface facilities and wells, but also reactivates faults and reduces rock permeability. Subsidence makes reservoir optimization difficult. Hence, it is important to assess or predict the surface subsidence and the reasons for subsidence early in the life of an oil field to make an optimization plan.
We use jointly the capacitance resistance model (CRM) (Alberoni et al., 2002 and Yousef, et al., 2006) that relies only on injection and production data, and the InSAR satellite imagery of surface subsidence. From CRM simulations, we estimate the connectivity between injectors and producers as well as general water flow directions from individual injectors. We then superimpose well connectivity and InSAR imagery to diagnose the reasons for the subsidence. Using new surface subsidence models, which are based on the continuity equation of CRM and rock mechanics, we are able to predict the average surface subsidence at Lost Hills from the injection and production rates.
Our work shows that there was significant volumetric rock damage at Lost Hills and the well connectivity changed dramatically with time because of reservoir compaction and the rock damage. We conclude that for a soft, fragile and nearly- impermeable rock such as the diatomite, high injection rate weakens the rock and creates dynamic water flow tubes or ‘channels’ without providing good pressure support to the reservoir. These high permeability ‘channels’ re-circulate most of the injected water between the injectors and producers.
Our CRM/InSAR approach is new and gives insights into the time-dependent and spatially variable fluid flow fields in a relatively shallow waterflood. Consequently, we may be able to suggest optimum water injection strategies to enhance oil production, while minimizing rock damage and surface subsidence. In addition, the proposed surface subsidence models are convenient and reliable to predict the average surface subsidence. / text
|
27 |
Response of minibasin subsidence to variable deposition : experiments and theoryKopriva, Bryant Timothy 20 July 2012 (has links)
Differential loading induced deformation of a mobile substrate (e.g., salt tectonics) is an important process for the development of accommodation space and stratigraphic architectures in intra-slope minibasins. Numerous studies of minibasin systems have focused on either the tectonic processes involved in salt body deformation or the stratigraphic interpretation of the overburden sediment deposits. This study, however, focuses on coevolution of depositional and tectonic processes and provides a new insight of the linked evolution into the stratigraphic patterns. Using a silicone polymer to simulate a viscous mobile substrate, a series of 2D experiments were conducted to explore the effects of variation in 1) sedimentation rate, 2) depositional style (intermittent sediment supply), and 3) the thickness of the deformable salt substrate on subsidence patterns and minibasin evolution. Experiments results have shown that larger initial thickness of salt substrate as well as lower sedimentation rate caused greater amounts of subsidence for a given amount of deposit. Furthermore, increase in subsidence rate was observed as sedimentation continued, while decrease in subsidence rate occurred once sedimentation ceased. Due to the linked depositional and tectonic processes, higher sediment supply resulted in relatively slower subsidence and more actively widening minibasins. Lower sediment supply was observed to have the reverse effect, resulting in higher relative subsidence and a narrow basin width. A numerical model that captures viscous flow under the deposit is also presented here. The model for minibasin formation showed the effects of interaction of the two processes (deposition and tectonics) on the development of minibasin strata in the experiments. Experimental and modeled findings have resulted in a new model of minibasin development that incorporates the effects of sedimentation rates on subsidence patterns into basin evolution. / text
|
28 |
Settlement characteristics of landfill sitesGreen, Damian C. January 2000 (has links)
No description available.
|
29 |
An integrated approach to three-dimensional computer modelling of sedimentary basinsRichards, Andrew John January 2000 (has links)
No description available.
|
30 |
Coupled fluid flow-geomechanics simulations applied to compaction and subsidence estimation in stress sensitive & heterogeneous reservoirs.Ta, Quoc Dung January 2009 (has links)
Recently, there has been considerable interest in the study of coupled fluid flow – geomechanics simulation, integrated into reservoir engineering. One of the most challenging problems in the petroleum industry is the understanding and predicting of subsidence at the surface due to formation compaction at depth, the result of withdrawal of fluid from a reservoir. In some oil fields, the compacting reservoir can support oil and gas production. However, the effects of compaction and subsidence may be linked to expenditures of millions of dollars in remedial work. The phenomena can also cause excessive stress at the well casing and within the completion zone where collapse of structural integrity could lead to loss of production. In addition, surface subsidence can result in problems at the wellhead or with pipeline systems and platform foundations. Recorded practice reveals that although these problems can be observed and measured, the technical methods to do this involve time, expense, with consideration uncertainty in expected compaction and are often not carried out. Alternatively, prediction of compaction and subsidence can be done using numerical reservoir simulation to estimate the extent of damage and assess measurement procedures. With regard to reservoir simulation approaches, most of the previous research and investigations are based on deterministic coupled theory applied to continuum porous media. In this work, uncertainty of parameters in reservoir is also considered. This thesis firstly investigates and reviews fully coupled fluid flow – geomechanics modeling theory as applied to reservoir engineering and geomechanics research. A finite element method is applied for solving the governing fully coupled equations. Also simplified analytical solutions that present more efficient methods for estimating compaction and subsidence are reviewed. These equations are used in uncertainty and stochastic simulations. Secondly, porosity and permeability variations can occur as a result of compaction. The research will explore changes of porosity and permeability in stress sensitive reservoirs. Thirdly, the content of this thesis incorporates the effects of large structures on stress variability and the impact of large structural features on compaction. Finally, this thesis deals with affect of pore collapse on multiphase fluid and rock properties. A test case from Venezuelan field is considered in detail; investigating reservoir performance and resultant compaction and subsidence. The research concludes that the application of coupled fluid flow – geomechanics modeling is paramount in estimating compaction and subsidence in oil fields. The governing equations that represent behaviour of fluid flow and deformation of the rock have been taken into account as well as the link between increasing effective stress and permeability/porosity. From both theory and experiment, this thesis shows that the influence of effective stress on the change in permeability is larger than the effect of reduction in porosity. In addition, the stochastic approach used has the advantage of covering the impact of uncertainty when predicting subsidence and compaction. This thesis also demonstrates the influence of a large structure (i.e. a fault) on stress regimes. Mathematical models are derived for each fault model to estimate the perturbed stress. All models are based on Mohr–Coulomb’s failure criteria in a faulted area. The analysis of different stress regimes due to nearby faults shows that effective stress regimes vary significantly compared to a conventional model. Subsequently, the selection of fault models, fault friction, internal friction angle and Poisson’s ratio are most important to assess the influence of the discontinuity on the reservoir compaction and subsidence because it can cause a significant change in stress regimes. To deal with multiphase flow in compacting reservoirs, this thesis presents a new method to generate the relative permeability curves in a compacting reservoir. The principle for calculating the new values of irreducible water saturation (Swir) due to compaction is demonstrated in this research. Using coupled reservoir simulators, fluid production due to compaction is simulated more comprehensively. In the case example presented, water production is reduced by approximately 70% compared to conventional modeling which does not consider changes in relative permeability. This project can be extended by applying the theory and practical methodologies developed to other case studies, where compaction and stress sensitivity dominate the drive mechanism. / http://proxy.library.adelaide.edu.au/login?url= http://library.adelaide.edu.au/cgi-bin/Pwebrecon.cgi?BBID=1374653 / Thesis (Ph.D.) - University of Adelaide, Australian School of Petroleum, 2007
|
Page generated in 0.0569 seconds