• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

[en] AFFINE MINIMAL SURFACES WITH SINGULARITIES / [pt] SUPERFÍCIES MÍNIMAS AFINS COM SINGULARIDADES

EDISON FAUSTO CUBA HUAMANI 26 December 2017 (has links)
[pt] Neste trabalho, estudamos superfícies com curvatura média afim zero. Elas são chamadas de superfícies mínimas afins e para superfícies convexas, também são chamadas de superfícies máximas afins. Provamos que uma superfície mínima euclidiana também é uma superfície mínima afim se, e somente se, as linhas de curvatura da superfície mínima euclidiana conjugada são planas. Para uma superfície máxima afim, descrevemos como recuperá-la do campo de vetor conormal ao longo de uma determinada curva. Para algumas escolhas do vector conormal, a superfície máxima é singular e descrevemos as condições sob as quais as singularidades são arestas cuspidais ou swallowtails. / [en] In this work we study surfaces with zero affine mean curvature. They are called affine minimal surfaces and for convex surfaces, they are also called affine maximal surfaces. We prove that an euclidean minimal surface is also an affine minimal surface if and only if the curvature lines of the conjugate euclidean minimal surface are planar. For an affine maximal surface, we describe how to recover it from the conormal vector field along a given curve. For some choices of the conormal vector, the maximal surface is singular and we describe conditions under which the singularities are cuspidal edges or swallowtails.

Page generated in 0.0468 seconds