• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 265
  • 136
  • 30
  • 20
  • 13
  • 12
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 565
  • 565
  • 221
  • 131
  • 124
  • 114
  • 95
  • 85
  • 85
  • 71
  • 69
  • 62
  • 60
  • 55
  • 53
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Dynamic equivalencing of distribution network with embedded generation

Feng, Xiaodan Selina January 2012 (has links)
Renewable energy generation will play an important role in solving the climate change problem. With renewable electricity generation increasing, there will be some significant changes in electric power systems, notably through smaller generators embedded in the distribution network. Historically insignificant volumes of Embedded Generation (EG) mean that traditionally it has been treated by the transmission system operator as negative load, with its impact on the dynamic behaviour of power systems neglected. However, with the penetration level increasing, EG would start to influence the dynamics and stability of the transmission network. Hence the dynamic behaviour of distribution network cannot be neglected any more. In most cases, a detailed distribution network model is not always available or necessary for the study of transmission network dynamics and stability. Thus a dynamic equivalent model of the distribution network that keeps its essential dynamic behavior, is required. Most existing dynamic equivalencing methods are based on the assumption that the detailed information of the complete power system is known. Dynamic equivalencing methods based on coherency of the machines have been applied to transmission networks but cannot be applied to distribution networks due to their radial structure. Hence an alternative methodology has been developed in this project to derive the dynamic equivalent model of the distribution network using system identification, without the detailed information of the distribution network necessarily known. Case studies have been accomplished in PSS/E on a model of the Scottish transmission network with the distribution network in Dumfries and Galloway. Embedded generation with a certain penetration level in either conventional generation or DFIG wind generation has been added to the model of the distribution network. The dynamic equivalent models of the distribution network are compared with the original distribution network model using a series of indicators. A constant power model has also been involved in the comparison to illustrate the advantage of using the dynamic equivalent to represent the distribution network. The results suggest that a proper dynamic equivalent model derived using this methodology may have better agreement to the original power system dynamic response than constant power equivalent. A discussion on factors that influence the performance of the dynamic equivalent model, is given to indicate the proper way to use this methodology. The major advantage of the dynamic equivalencing methodology developed in this project is that it can potentially use the time series obtained from measurements to derive the dynamic equivalent models without knowing detailed information on the distribution network. The derived dynamic equivalent, in a simple spate-space form, can be implemented in commercial simulation tools, such as PSS/E.
12

Digital correlation techniques for identifying dynamic systems

Finnie, Brian William January 1966 (has links)
A frequent problem in physics and engineering is that of determining a mathematical model for the dynamic performance of a system. It is particularly useful to be able to make measurements which enable such a model to follow changes in the system dynamics in the course of normal operation. Linear control theory, although now being replaced by a more general approach, can still form the basis for such system analysis. Cross correlating signals from a linear process can give a great deal of information about the process dynamics without injecting any test disturbances, or, when test signals are possible, cross correlation can be used to recover dynamic information in the presence of considerable background noise. The use of specially constructed test signals can make cross correlation a powerful technique in the identification of dynamic systems.
13

Linear and Nonlinear Identification of Solid Fuel Furnace

Gransten, Johan January 2005 (has links)
<p>The aim of this thesis is to develop the knowledge about nonlinear and/or adaptive solid fuel boiler control at Vattenfall Utveckling AB. The aim is also to make a study of implemented and published control strategies.</p><p>A solid fuel boiler is a large-scale heat (and power) generating plant. The Idbäcken boiler studied in this work, is a one hundred MW furnace mainly fired with wood chips. The control system consists of several linear PID controllers working together, and the furnace is a nonlinear system. That, and the fact that the fuel-flow is not monitored, are the main reasons for the control problems. The system fluctuates periodically and the CO outlets sometimes rise high above the permitted level.</p><p>There is little work done in the area of advanced boiler control, but some interesting approaches are described in scientific articles. MPC (Model Predictive Control), nonlinear system identification using ANN (Artificial Neural Network), fuzzy logic, Hµ loop shaping and MIMO (Multiple Input Multiple Output) PID tuning methods have been tested with good results.</p><p>Both linear and nonlinear system identification is performed in the thesis. The linear models are able to explain about forty percent of the system behavior and the nonlinear models explain about sixty to eighty percent. The main result is that nonlinear models improve the performance and that there are considerable disturbances complicating the identification. Another identification issue was the feedback during the data collection.</p>
14

Linear and Nonlinear Identification of Solid Fuel Furnace

Gransten, Johan January 2005 (has links)
The aim of this thesis is to develop the knowledge about nonlinear and/or adaptive solid fuel boiler control at Vattenfall Utveckling AB. The aim is also to make a study of implemented and published control strategies. A solid fuel boiler is a large-scale heat (and power) generating plant. The Idbäcken boiler studied in this work, is a one hundred MW furnace mainly fired with wood chips. The control system consists of several linear PID controllers working together, and the furnace is a nonlinear system. That, and the fact that the fuel-flow is not monitored, are the main reasons for the control problems. The system fluctuates periodically and the CO outlets sometimes rise high above the permitted level. There is little work done in the area of advanced boiler control, but some interesting approaches are described in scientific articles. MPC (Model Predictive Control), nonlinear system identification using ANN (Artificial Neural Network), fuzzy logic, Hµ loop shaping and MIMO (Multiple Input Multiple Output) PID tuning methods have been tested with good results. Both linear and nonlinear system identification is performed in the thesis. The linear models are able to explain about forty percent of the system behavior and the nonlinear models explain about sixty to eighty percent. The main result is that nonlinear models improve the performance and that there are considerable disturbances complicating the identification. Another identification issue was the feedback during the data collection.
15

Nonlinear identification and control of building structures equipped with magnetorheological dampers

Kim, Yeesock 15 May 2009 (has links)
A new system identification algorithm, multiple autoregressive exogenous (ARX) inputs-based Takagi-Sugeno (TS) fuzzy model, is developed to identify nonlinear behavior of structure-magnetorheological (MR) damper systems. It integrates a set of ARX models, clustering algorithms, and weighted least squares algorithm with a TS fuzzy model. Based on a set of input-output data that is generated from building structures equipped with MR dampers, premise parameters of the ARX-TS fuzzy model are determined by clustering algorithms. Once the premise part is constructed, consequent parameters of the ARX-TS fuzzy model are optimized by the weighted least squares algorithm. To demonstrate the effectiveness of the proposed ARX-TS fuzzy model, it is applied to a three-, an eight-, a twenty-story building structures. It is demonstrated from the numerical simulation that the proposed ARX-TS fuzzy algorithm is effective to identify nonlinear behavior of seismically excited building structures equipped with MR dampers. A new semiactive nonlinear fuzzy control (SNFC) algorithm is developed through integration of multiple Lyapunov-based state feedback gains, a Kalman filter, and a converting algorithm with TS fuzzy interpolation method. First, the nonlinear ARX-TS fuzzy model is decomposed into a set of linear dynamic models that are operated in only a local linear operating region. Based on the decomposed models, multiple Lyapunov-based state feedback controllers are formulated in terms of linear matrix inequalities (LMIs) such that the structure-MR damper system is globally asymptotically stable and the performance on transient responses is guaranteed. Then, the state feedback controllers are integrated with a Kalman filter and a converting algorithm using a TS fuzzy interpolation method to construct semiactive output feedback controllers. To demonstrate the effectiveness of the proposed SNFC algorithm, it is applied to a three-, an eight-, and a twenty-story building structures. It is demonstrated from the numerical simulation that the proposed SNFC algorithm is effective to control responses of seismically excited building structures equipped with MR dampers. In addition, it is shown that the proposed SNFC system is better than a traditional optimal algorithm, H2/linear quadratic Gaussian-based semiactive control strategy.
16

Detection and transient dynamics modeling of experimental hypersonic inlet unstart

Hutchins, Kelley Elizabeth 15 February 2012 (has links)
During unstart, the rapid upstream propagation of a hypersonic engine's inlet shock system can be clearly seen through inlet pressure measurements. Specifically, the magnitude of the pressure readings suddenly and dramatically increases as soon as the leading edge of the shock system passes the measurement location. A change detection algorithm can monitor the pressure time history at a given sensing location and determine when an abrupt pressure rise occurs. If this kind of information can be obtained at various sensing locations distributed throughout the inlet then a feedback control scheme has an improved basis upon which to make actuation decisions for preventing unstart. In this thesis a variety of change detection algorithms have been implemented and tested on multiple sources of experimental high-speed pressure transducer data. The performance of these algorithms is compared and suitability of each algorithm for the general unstart problem is discussed. Attempts to model the transient dynamics governing the unstart process have also been made through the use of system identification techniques. The result of these system identification efforts is a partially nonlinear mathematical model that describes shock motion through pressure signals. The process reveals that the nonlinear behavior can be separated from the linear with relative ease. Related attempts are then made to create a model where the nonlinear portion has been specified leaving only the linear portion to be determined by system identification. The modeling and identification process specific to the unstart data used is discussed and successful models are presented for both cases. / text
17

Identification Techniques for Mathematical Modeling of the Human Smooth Pursuit System

Jansson, Daniel January 2015 (has links)
This thesis proposes nonlinear system identification techniques for the mathematical modeling of the human smooth pursuit system (SPS) with application to motor symptom quantification in Parkinson's disease (PD). The SPS refers to the complex neuromuscular system in humans that governs the smooth pursuit eye movements (SPEM). Insight into the SPS and its operation is of importance in a wide and steadily expanding array of application areas and research fields. The ultimate purpose of the work in this thesis is to attain a deeper understanding and quantification of the SPS dynamics and thus facilitate the continued development of novel commercial products and medical devices. The main contribution of this thesis is in the derivation and evaluation of several techniques for SPS characterization. While attempts to mathematically model the SPS have been made in the literature before, several key aspects of the problem have been previously overlooked.This work is the first one to devise dynamical models intended for extended-time experiments and also to consider systematic visual stimuli design in the context of SPS modeling. The result is a handful of parametric mathematical models outperforming current State-of-the-Art models in terms of prediction accuracy for rich input signals. As a complement to the parametric dynamical models, a non-parametric technique involving the construction of individual statistical models pertaining to specific gaze trajectories is suggested. Both the parametric and non-parametric models are demonstrated to successfully distinguish between individuals or groups of individuals based on eye movements.Furthermore, a novel approach to Wiener system identification using Volterra series is proposed and analyzed. It is exploited to confirm that the SPS in healthy individuals is indeed nonlinear, but that the nonlinearity of the system is significantly stronger in PD subjects. The nonlinearity in healthy individuals appears to be well-modeled by a static output function, whereas the nonlinear behavior introduced to the SPS by PD is dynamical.
18

Experiment design for nonlinear system identification

Zhu, Yijia Unknown Date
No description available.
19

Model predictive control of a thermoelectric-based heat pump.

Petryna, Stephen 01 December 2013 (has links)
Government regulations and growing concerns regarding global warming has lead to an increasing number of passenger vehicles on the roads today that are not powered by the conventional internal combustion (IC) engine. Automotive manufacturers have introduced electric powertrains over the last 10 years which have introduced new challenges regarding powering accessory loads historically reliant on the mechanical energy of the IC engine. High density batteries are used to store the electrical energy required by an electric powertrain and due to their relatively narrow acceptable temperature range, require liquid cooling. The cooling system in place currently utilizes the A/C compressor for cooling and a separate electric element for heating which is energy expensive when the source of energy is electricity. The proposed solution is a thermoelectric heat pump for both heating and cooling. A model predictive controller (MPC) is designed, implemented and tested to optimize the operation of the thermoelectric heat pump. The model predictive controller is chosen due to its ability to accept multiple constrained inputs and outputs as well as optimize the system according to a cost function which may consist of any parameters the designer chooses. The system is highly non-linear and complex therefore both physical modelling and system identi cation were used to derive an accurate model of the system. A steepest descent algorithm was used for optimization of the cost function. The controller was tested in a test bench environment. The results show the thermoelectric heat pump does hold the battery at the speci ed set point however more optimization was expected from the controller. The controller fell short of expectation due to operational restriction enforced during design meant to simplify the problem. The MPC controller is capable of much better performance through adding more detail to the model, an improved optimization algorithm and allowing more flexibility in set point selection.
20

Sampled-data frequency response system identification for large space structures

Hammond, Thomas T. January 1988 (has links)
Thesis (M.S.)--Ohio University, June, 1988. / Title from PDF t.p.

Page generated in 0.0366 seconds