• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 181
  • 162
  • 26
  • 25
  • 13
  • 6
  • 5
  • 4
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 540
  • 348
  • 122
  • 113
  • 107
  • 79
  • 59
  • 57
  • 50
  • 49
  • 48
  • 40
  • 40
  • 40
  • 40
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
521

Precipitation behavior of the super austenitic stainless steel SANICRO® 35 and the effect on impact toughness and pitting corrosion resistance

Li, Shunyi January 2022 (has links)
This research extended the knowledge of the solid phase transformation and the resulting influence on impact toughness and pitting corrosion resistance in super austenitic stainless steel (SASS) SANICRO® 35. A time-temperature-transformation diagram (TTT diagram) was assembled by performing isothermal heat treatments in the temperature range of 650-1050 °C for different periods of time, ranging from 5 min to 500 min. Microstructural analysis via LOM-DIC, SEM-EDS shows that the nose temperature of dominating σ phase is located in between 900-950 °C. Minor nitrides including π phase and Cr2N with the nose temperature of 900 °C and 850 °C, respectively, were detected after prolonged heat treatment times. Area fraction of precipitates was calculated by analyzing micrographic images in the software ImageJ. Charpy impact tests indicate that the impact toughness degrades with increasing area fraction of precipitates but at a higher rate at the early stage of precipitation. Despite a much-lessened area fraction, fine precipitates decorating the grain boundaries in a continuous pattern impose significant negative effect on impact toughness. Pitting corrosion resistance was indicated by critical pitting temperature (CPT) as per ASTM G150mod (3M MgCl2). Pitting corrosion resistance deteriorated with increasing amount of σ phase due to the Cr- and Mo-depleted surrounding area, but it is more dependent on the distribution pattern of precipitates, as well as the secondary phase type. The lowest CPTs were measured after heat treatment for 500 min at 800 °C and 850 °C where nitrides including Cr2N and π phase were formed and the small precipitates were distributed on grain boundaries continuously. Auxiliary simulation of TTT diagram via TC PRISMA shows drastic variation from experimental results in regard of time scale. The enhancement pre-factor for the interfacial mobility and interfacial energy can be modified to approach the experimental results. / Detta arbete utfördes för att undersöka fasomvandlingar och dess inflytande på slagsegheten och gropfrätningsmotståndet för det superaustenitiska rostfria stålet (SASS) SANICRO® 35. Ett tid-temperatur-transformationsdiagram (TTT-diagram) har tagits fram genom att utföra isotermiska värmebehandlingar mellan 650-1050 °C med olika hålltider från 5-500 minuter. Mikrostrukturanalys genom LOM-DIC, SEM-EDS undersökning visar att nosen för den dominerande σ-fasen ligger mellan 900-950 °C. Mindre nitrider, som π-fas och Cr2N, med nosarna vid 900 °C respektive 850 °C observerades vid längre hålltider. Areafraktionen av utskiljningar beräknades genom analys av mikrobilder med programmet ImageJ. Slagprovning visade att slagsegheten minskar med ökande fraktion utskiljningar men med en tydligare försämring i början av fastransformationen. Trots att de utgör en betydligt mindre areafraktion så kan mindre utskiljningar som följer korngränserna också påverka materialet signifikant negativt. Gropfrätningsmotståndet testades genom att mäta Critical Pitting Temperature (CPT) enligt ASTM G150mod (3M MgCl2). CPT minskade med ökande andel σ-fas p.g.a. den Cr- och Mo-utarmade zon som omger de utskilda partiklarna. Det finns även en stark koppling mellan lägre CPT och distributionen av utskiljningarna samt andra typer av faser. Lägst CPT uppmättes efter 500 minuter vid 800 °C och 850 °C då små nitrider inklusive Cr2N och π-fas bildats längs med stora delar av korngränserna. Simulering av TTT-diagram i TC PRISMA visade en drastisk skillnad i tiden till utskiljning/mängden utskiljningar jämfört med de experimentella resultaten. Diffusionförstärkningsfaktorn (eng. “mobility enhancement pre-factor”) och ytenergin kan minskas för att bättre överensstämma med de experimentella resultaten.
522

[pt] AVALIAÇÃO DA TENACIDADE E PREVISÕES DE FRATURAS EM MATERIAIS ELASTOPLÁSTICOS / [en] TOUGHNESS EVALUATION AND FRACTURE PREDICTIONS IN ELASTOPLASTIC MATERIALS

EDUARDO ENES COTA 05 October 2020 (has links)
[pt] Compreender como analisar trincas é essencial para a indústria petroquímica evitar qualquer incidente de uma forma econômica. Normas de Integridade Estrutural fornecem procedimentos conservadores para avaliar componentes trincados como tubulações e vasos de pressão. Portanto, previsões de cargas criticas foram calculadas assumindo uma placa com trinca passante seguindo procedimentos dos níveis 2 e 3 da API 579. Para comparação, testes experimentais foram realizados para avaliar o conservatismo da norma em falha por rasgamento dúctil. Além disso, a tenacidade à fratura foi medida por meio do JIc e curva J-R. A técnica usada durante o processo de fratura foi o método de flexibilidade elástica com descarregamento e carregamentos sequenciais. Adicionalmente, efeito de geometria e tipo de carregamento, os quais possuem grande influência nas medições de tenacidade, também foram avaliados usando conceitos da mecânica da fratura elastoplástica. O material utilizado nesse trabalho foi o API 5L X80, que é um aço de Alta Resistencia e Baixa Liga (ARBL) bifásico desenvolvido para tubulações aplicáveis em aguas profundas. Os ensaios experimentais de medição de tenacidade usando corpos de prova SE(B), que possuem média-alta restrição plástica, foram testados seguindo procedimentos da ASTM E1820-17. Já os experimentos usando corpos de prova SE(T), que possuem baixa restrição plástica, foram realizados considerando procedimentos da literatura. / [en] Understanding how to analyze cracks is essential for the petrochemical industry to avoid accidents or incidents in a safe and economical way. Structural Integrity standards provide conservative procedures to assess the actual strength of cracked components like pipes and pressure vessels. Therefore, critical loads predictions were computed on a plate with a through-wall crack following level 2 and 3 of the fitness-for-service guide API 579. For comparison, experimental tests were performed to evaluate the standard conservatism on a ductile tearing type of failure. Furthermore, the fracture toughness of the steel was measured through standard JIc tests and material s resistance curves (J-R curve). The technique used during the fracturing process was the elastic compliance method with unloading/reloading sequences. Additionally, the effects of the specimen s geometry and the type of loading, which can significantly change the value of its toughness, were also analyzed using concepts of elastoplastic fracture mechanics. The material used in this work was the API 5L X80, which is a High Strength Low Alloy (HSLA) dual-phase steel developed for deepwater pipelines. The fracture toughness measurement tests using SE(B) specimens, which have a medium-to-high plastic constraint, followed the ASTM E1820-17 procedures. The experiments with SE(T) specimens, which present a low plastic restriction, considered literature procedures.
523

A psycho-educational intervention program to enhance the mental toughness of secondary school cricket players

Griffith, William Charles 11 1900 (has links)
The purpose of this study was to investigate the influence of a psycho-educational intervention program on the mental toughness of secondary school cricketers. The general aim of the study was to use psychological skills and psychological techniques to enhance the mental toughness of secondary school cricketers, within a psycho-educational framework. This general aim of the study was actualised by employing the following specific aims: • A literature review was conducted to explore the psycho-educational model. It was found that the psycho-educational model was an appropriate model to use as the framework of the intervention program. • The literature review investigated and evaluated different psychological skills and psychological techniques that influenced the mental toughness of cricketers positively. • A questionnaire was designed. This questionnaire (CMTQ) fulfilled the role of a psychological skills measuring tool. • A psycho-educational intervention program was designed around the findings of the literature study. • Guidelines were compiled to follow when coaching mental toughness to secondary school cricketers. • The intervention program was presented over a six week period. • An empirical study was conducted to evaluate the successfulness of the intervention program. The first phase of the empirical study was done before the presentation of the psycho-educational intervention program. The data suggest that Confidence and Motivation were the two main psychological skills that the participants employed in their mental game of cricket. The second phase of the empirical study was only done after the completion of the six week intervention program. The selected data analysis method employed to evaluate the effectiveness of the program was the t-test for dependant groups. v The results of the data analysis indicated that the participants in the experimental group improved in their mental toughness performance significantly. When the findings of the literature review and the results of the empirical study are combined, it appears as if this intervention program will have a positive influence on the cricket performance of secondary school cricketers. / Psychology of Education / D. Ed. (Psychology of Education)
524

Organicko-anorganické polymerní nanokompozity / Organic-Inorganic Polymer Nanocomposites

Ponyrko, Sergii January 2016 (has links)
The epoxy based polymer is one of the very common polymers, which was used as a host to create new better materials - nanocomposites. This thesis focused on the improvement of the thermomechanical properties of the epoxy thermosets without deteriorating their existing benefits and on further potential application of this knowledge in "smart" systems. The largest part of this work is dedicated to the reinforcement of epoxy thermosets by in situ generated silica and synthesis of organic-inorganic nanocomposites. Borontrifluoride monoethylamine (BF3MEA) was chosen as effective catalyst for the formation of nanosilica in epoxy-amine network matrix under nonaqueous (non-hydrolytic) sol-gel process. We proposed the mechanism of the nonaqueous sol-gel procedure, studied the structure evolution during the nanocomposite formation, and also determined the structure, morphology and thermomechanical properties of the obtained epoxy-silica nanocomposites. Significant attention in this work was given to the application of coupling agent and ionic liquids to improve compatibilization of the organic matrix and the inorganic part. As a result of the nonaqueous sol-gel process optimization by combination of the tetramethoxysilane (TMOS) and the coupling agent glycidyloxypropyltrimethoxysilane (GTMS), the high-Tg and...
525

Estudo experimental do comportamento à fratura frágil em aços estruturais ferríticos e aplicações à determinação da curva mestra. / Experimental study on the cleavage fracture behavior of structural ferritic steels and applications to determine the master curve.

Savioli, Rafael Guimarães 13 April 2016 (has links)
Este trabalho apresenta uma investigação experimental sobre o comportamento à fratura frágil de aços estruturais ferríticos, ASTM A285 Gr C e ASTM A515 Gr 65. Os resultados deste trabalho ampliam a base de dados de propriedades mecânicas utilizadas nas análises de integridade de estruturas pressurizadas tais como vasos de pressão e tanques de armazenamento construídos com esta classe de material. O trabalho tem por objetivo também avaliar a aplicabilidade de corpos de prova de dimensões reduzidas, PCVN, na determinação da temperatura de referência, T0, por meio da metodologia da Curva Mestra, a qual define a dependência da tenacidade à fratura do material em função da temperatura. Os ensaios de tenacidade à fratura foram conduzidos utilizando-se corpos de prova solicitados em flexão três pontos com geometria SE(B), PCVN e PCVN com entalhe lateral, extraídos de chapas laminadas. Os resultados dos ensaios foram obtidos em termos de integral J no momento da instabilidade, denotados por Jc. Dados adicionais de resistência à tração e de Impacto Charpy convencional também foram obtidos para caracterizar o comportamento mecânico dos aços utilizados. Os resultados mostraram uma forte influência da geometria dos corpos de prova sobre os valores de Jc, evidenciada pela grande variação nos valores de tenacidade à fratura. / This work presents an experimental investigation on the cleavage fracture behavior of structural ferritic steels, ASTM A285 Grade C and ASTM A515 Grade 65. One purpose of this study is to enlarge a previously reported work on mechanical and fracture properties for this class of steel to provide a more definite database for use in structural and defect analyses of pressurized components, including pressure vessels and storage tanks. Another purpose is to address the applicability of Precracked V-notch Charpy specimens to determine the reference temperature, T0, derived from the Master Curve Methodology which defines the dependence of fracture toughness with temperature for the tested material. Fracture toughness testing conducted on single edge bend specimens in three-point loading (SE(B), PCVN Plain Side and PCVN Side Grooved) extracted from laminated plates provides the cleavage fracture resistance data in terms of the J-integral at cleavage instability, Jc. Additional tensile and conventional Charpy tests produce further experimental data which serve to characterize the mechanical behavior of the tested materials. The results reveal a strong effect of specimen geometry on Jc values associated with large scatter in the measured values of cleavage fracture toughness.
526

Fatigue Crack Growth Mechanisms in Al-Si-Mg Alloys

Lados, Diana Aida 04 February 2004 (has links)
Due to the increasing use of cyclically loaded cast aluminum components in automotive and aerospace applications, fatigue and fatigue crack growth characteristics of aluminum castings are of great interest. Despite the extensive research efforts dedicated to this topic, a fundamental, mechanistic understanding of these alloys' behavior when subjected to dynamic loading is still lacking. This fundamental research investigated the mechanisms active at the microstructure level during dynamic loading and failure of conventionally cast and SSM Al-Si-Mg alloys. Five model alloys were cast to isolate the individual contribution of constituent phases on fatigue resistance. The major constituent phases, alpha-Al dendrites, Al/Si eutectic phase, and Mg-Si strengthening precipitates were mechanistically investigated to relate microstructure to near-threshold crack growth (Delta Kth) and crack propagation regimes (Regions II and III) for alloys of different Si composition/morphology, grain size, secondary dendrite arm spacing, heat treatment. A procedure to evaluate the actual fracture toughness from fatigue crack growth data was successfully developed based on a complex Elastic-Plastic-Fracture-Mechanics (EPFM/J-integral) approach. Residual stress-microstructure interactions, commonly overlooked by researches in the field, were also comprehensively defined and accounted for both experimentally and mathematically, and future revisions of ASTM E647 are expected.
527

Dimensionnement de canalisations sur des critères en déformation dans des environnements extrêmes / Strain-based design of pipelines in extreme environments

Soret, Clément 21 April 2017 (has links)
Les standards consacrés à la conception des oléoducs se concentrent principalement sur les chargements opérationnels, tels que les pressions internes et externes, et les procédures d'analyse de défauts actuelles n'exploitent pas les capacités d'écrouissage du matériau. Pourtant, dans des conditions extrêmes, les oléoducs peuvent être soumis à des contraintes au-delà de la limite d'élasticité jusqu'à atteindre 2.5% de déformations plastiques. Ici, les procédures proposées par ExxonMobil et PRCI basées sur des critères en déformation sont présentées, et l'utilisation de l'éprouvette SENT (Single Edge Notched Tension) pour caractériser la ténacité est étudiée, en comparant les différentes procédures d'essais recommandées. Puis, une importante campagne expérimentale a été réalisée pour caractériser deux aciers pour oléoducs à température ambiante et à basses températures. Les comportements mécaniques des matériaux de base et d'apport ont été identifiés grâce à l'utilisation de l'analyse inverse, et il est montré que le modèle d'endommagement GTN permet de modéliser finement les essais sur éprouvettes de laboratoire. Enfin, deux essais sur structures (pression et flexion, puis pression et traction) ont été réalisés de manière à comparer les approches globales et le modèle d'endommagement GTN. Ce dernier démontre une bonne transférabilité de l'éprouvette vers la structure. / Pipeline design codes and standards traditionally focus on the operational loadings such as internal and external pressures that are likely to exist over the entire lifetime of the pipeline. Existing Engineering Critical Assessments are mostly based on stress considerations, where the design margin is given as a percentage of the yield strength. In extrem environments, pipelines may experience stresses beyond the yield and plastic deformations up to 2.5 %. In such conditions, strain-based design procedures apply. In this work, a literature review of the existing strain based methods is proposed, including ExxonMobil and PRCI multi-tier approaches. The use of the Single Edge Notched Tension (SENT) specimen to measure the material toughness is then studied, benchmarking the recommended testing procedures from literature. A comprehensive experimental campaign was carried out to fully characterize two actual line pipes at room and low temperatures. The mechanical behavior of parent and weld materials are identified using an inverse analysis, and GTN damage model is shown to allow accurate modeling of the laboratory testings. Finally, two full scale tests (pressure + bending or pressure + tension) were carried out to benchmark the global approaches and GTN damage model. The latter showed a very good transferability from specimens to the structure.
528

The Influence of Fibre Processing and Treatments on Hemp Fibre/Epoxy and Hemp Fibre/PLA Composites

Islam, Mohammad Saiful January 2008 (has links)
In recent years, due to growing environmental awareness, considerable attention has been given to the development and production of natural fibre reinforced polymer (both thermoset and thermoplastic) composites. The main objective of this study was to reinforce epoxy and polylactic acid (PLA) with hemp fibre to produce improved composites by optimising the fibre treatment methods, composite processing methods, and fibre/matrix interfacial bonding. An investigation was conducted to obtain a suitable fibre alkali treatment method to: (i) remove non-cellulosic fibre components such as lignin (sensitive to ultra violet (UV) radiation) and hemicelluloses (sensitive to moisture) to improve long term composites stability (ii) roughen fibre surface to obtain mechanical interlocking with matrices (iii)expose cellulose hydroxyl groups to obtain hydrogen and covalent bonding with matrices (iv) separate the fibres from their fibre bundles to make the fibre surface available for bonding with matrices (v) retain tensile strength by keeping fibre damage to a minimum level and (vi) increase crystalline cellulose by better packing of cellulose chains to enhance the thermal stability of the fibres. An empirical model was developed for fibre tensile strength (TS) obtained with different treatment conditions (different sodium hydroxide (NaOH) and sodium sulphite (Na2SO3) concentrations, treatment temperatures, and digestion times) by a partial factorial design. Upon analysis of the alkali fibre treatments by single fibre tensile testing (SFTT), scanning electron microscopy (SEM), zeta potential measurements, differential thermal analysis/thermogravimetric analysis (DTA/TGA), wide angle X-ray diffraction (WAXRD), lignin analysis and Fourier transform infrared (FTIR) spectroscopy, a treatment consisting of 5 wt% NaOH and 2 wt% Na2SO3 concentrations, with a treatment temperature of 120oC and a digestion time of 60 minutes, was found to give the best combination of the required properties. This alkali treatment produced fibres with an average TS and Young's modulus (YM) of 463 MPa and 33 GPa respectively. The fibres obtained with the optimised alkali treatment were further treated with acetic anhydride and phenyltrimethoxy silane. However, acetylated and silane treated fibres were not found to give overall performance improvement. Cure kinetics of the neat epoxy (NE) and 40 wt% untreated fibre/epoxy (UTFE) composites were studied and it was found that the addition of fibres into epoxy resin increased the reaction rate and decreased the curing time. An increase in the nucleophilic activity of the amine groups in the presence of fibres is believed to have increased the reaction rate of the fibre/epoxy resin system and hence reduced the activation energies compared to NE. The highest interfacial shear strength (IFSS) value for alkali treated fibre/epoxy (ATFE) samples was 5.2 MPa which was larger than the highest value of 2.7 MPa for UTFE samples supporting that there was a stronger interface between alkali treated fibre and epoxy resin. The best fibre/epoxy bonding was found for an epoxy to curing agent ratio of 1:1 (E1C1) followed by epoxy to curing agent ratios of 1:1.2 (E1C1.2), 1: 0.8 (E1C0.8), and finally for 1:0.6 (E1C0.6). Long and short fibre reinforced epoxy composites were produced with various processing conditions using vacuum bag and compression moulding. A 65 wt% untreated long fibre/epoxy (UTLFE) composite produced by compression moulding at 70oC with a TS of 165 MPa, YM of 17 GPa, flexural strength of 180 MPa, flexural modulus of 10.1 GPa, impact energy (IE) of 14.5 kJ/m2, and fracture toughness (KIc) of 5 MPa.m1/2 was found to be the best in contrast to the trend of increased IFSS for ATFE samples. This is considered to be due to stress concentration as a result of increased fibre/fibre contact with the increased fibre content in the ATFE composites compared to the UTFE composites. Hygrothermal ageing of 65 wt% untreated and alkali treated long and short fibre/epoxy composites (produced by curing at 70oC) showed that long fibre/epoxy composites were more resistant than short fibre/epoxy composites and ATFE composites were more resistant than UTFE composites towards hygrothermal ageing environments as revealed from diffusion coefficients and tensile, flexural, impact, fracture toughness, SEM, TGA, and WAXRD test results. Accelerated ageing of 65 wt% UTLFE and alkali treated long fibre/epoxy (ATLFE) composites (produced by curing at 70oC) showed that ATLFE composites were more resistant than UTLFE composites towards hygrothermal ageing environments as revealed from tensile, flexural, impact, KIc, SEM, TGA, WAXRD, FTIR test results. IFSS obtained with untreated fibre/PLA (UFPLA) and alkali treated fibre/PLA (ATPLA) samples showed that ATPLA samples had greater IFSS than that of UFPLA samples. The increase in the formation of hydrogen bonding and mechanical interlocking of the alkali treated fibres with PLA could be responsible for the increased IFSS for ATPLA system compared to UFPLA system. Long and short fibre reinforced PLA composites were also produced with various processing conditions using compression moulding. A 32 wt% alkali treated long fibre PLA composite produced by film stacking with a TS of 83 MPa, YM of 11 GPa, flexural strength of 143 MPa, flexural modulus of 6.5 GPa, IE of 9 kJ/m2, and KIc of 3 MPa.m1/2 was found to be the best. This could be due to the better bonding of the alkali treated fibres with PLA. The mechanical properties of this composite have been found to be the best compared to the available literature. Hygrothermal and accelerated ageing of 32 wt% untreated and alkali treated long fibre/PLA composites ATPLA composites were more resistant than UFPLA composites towards hygrothermal and accelerated ageing environments as revealed from diffusion coefficients and tensile, flexural, impact, KIc, SEM, differential scanning calorimetry (DSC), WAXRD, and FTIR results. Increased potential hydrogen bond formation and mechanical interlocking of the alkali treated fibres with PLA could be responsible for the increased resistance of the ATPLA composites. Based on the present study, it can be said that the performance of natural fibre composites largely depend on fibre properties (e.g. length and orientation), matrix properties (e.g. cure kinetics and crystallinity), fibre treatment and processing methods, and composite processing methods.
529

Morphologie und Bruchverhalten von Block- und Multipfropfcopolymeren / Morphology and Fracture Behaviour of Block and Multigraft Copolymers

Staudinger, Ulrike 16 August 2007 (has links) (PDF)
Ziel der vorliegenden Arbeit war es, die Zusammenhänge zwischen der molekularen Architektur, Morphologie und den mechanischen bzw. bruchmechanischen Eigenschaften in S-SB-S-Triblockcopolymeren und deren Blends und in PI-PS-Multipfropfcopolymeren herauszuarbeiten und damit einerseits einen Beitrag für das Verständnis der Struktur-Eigenschaftsbeziehungen in Block- und Pfropfcopolymeren zu leisten und andererseits Möglichkeiten zur Entwicklung neuer Materialien aufzuzeigen, welche besondere Eigenschaftskombinationen aufweisen und damit ein bedeutendes Interesse für industrielle Anwendungen hervorrufen. Für die Untersuchungen wurde dabei der PS-Außenblockanteil und das S/B-Verhältnis im SB-Mittelblock in S-SB-S-Triblockcopolymeren, die Thermoplast/Thermoplastisches Elastomer (TP/TPE) -Zusammensetzung in S-SB-S-Triblockcopolymer-Blends sowie die Funktionalität und die Anzahl der Verknüpfungspunkte in PI-PS-Multipfropfcopolymeren variiert. Zur Charakterisierung der Phasenmischbarkeit und der Morphologie wurden die dynamisch mechanische Analyse (DMA), die Transmissionselektronenmikroskopie (TEM) und die Röntgenkleinwinkelstreuung (SAXS) angewandt. Die mechanischen Eigenschaften wurden mit dem einachsigen Zugversuch untersucht. Bruchmechanische Untersuchungen erfolgten unter Anwendung der „Essential Work of Fracture“- (EWF-) Methode, welche als Konzept der „Post-Yield“-Bruchmechanik innerhalb der Fließbruchmechanik für duktile nanostrukturierte polymere Materialien sehr gut anwendbar ist und Aussagen zur Bruchzähigkeit der Materialien liefert. Zur näheren Charakterisierung des zeitaufgelösten Deformationsverhaltens sowie der Rissausbreitungskinetik wurden die Dehnungsfeldanalyse, eine Bruchflächenanalyse mittels Rasterelektronenmikroskopie (REM) sowie das Risswiderstandskurven-Konzept angewandt. Die Untersuchungen der S-SB-S-Triblockcopolymersysteme und der PI-PS-Multipfropfcopolymere konnten den signifikanten Einfluss der molekularen Architektur, der Blockzusammensetzung und des PS-Gehaltes auf das Phasenverhalten, die Morphologie und die Eigenschaften klar herausstellen. Durch die Variation dieser Parameter kann das Eigenschaftsspektrum von thermoplastisch zu elastomer eingestellt und somit sowohl TPs oder TPEs mit hoher Steifigkeit und Zähigkeit als auch TPEs mit superelastischem Charakter erzeugt werden. Daraus eröffnet sich ein breiter Anwendungsbereich dieser Materialien, welche aufgrund ihrer Transparenz und physiologischen Verträglichkeit auch interessante optische und gesundheitliche Vorteile mitbringen. Es konnte gezeigt werden, dass durch die systematische Variation der Architektur die gezielte Einstellung gewünschter Eigenschaftsprofile möglich ist. Die Arbeit leistet somit einen Beitrag zur Entwicklung anwendungsorientierter Materialkonzepte, welche ingenieurwissenschaftlich interessant sind. / The aim of this thesis was to study the relation between molecular architecture, morphology and (fracture) mechanical properties of S-SB-S triblock copolymers and PI-PS multigraft copolymers. Hence, this work should contribute to the understanding of structure-property-relationship in block and multigraft copolymers and thus offer possibilities for the development of novel materials with special properties interesting for industrial application. Within this study in the case of S-SB-S triblock copolymers the PS outer block content and the S/B ratio of the middle block, in the case of S-SB-S triblock copolymer blends the thermoplast/thermoplastic elastomer (TP/TPE) composition and in case of PI-PS multigraft copolymers the functionality and number of branch points were varied. For the characterisation of morphology and phase miscibility dynamic mechanical analysis (DMA), transmission electron microscopy (TEM) and small angle X-ray scattering (SAXS) were applied. Uniaxial tensile tests were carried out to investigate the mechanical properties. The fracture mechanical behaviour was studied using essential work of fracture (EWF) concept based on the post yield fracture mechanic principles, which is suitable to characterise fracture toughness of ductile nanostructured materials. The time resolved analysis of deformation and fracture behaviour was characterised qualitatively by strain field analysis, scanning electron microscopy (SEM) of the fractured surfaces and quantitatively by evaluation of the crack propagation kinetics and construction of R-curves. This study clearly highlights the significant influence of molecular architecture block composition and PS content on the phase behaviour, morphology and properties of S-SB-S triblock copolymers and PI-PS multigraft copolymers. By varying these parameters the property profile can be adjusted diversifying from thermoplastic to elastomeric and both TP or TPE materials with high stiffness and toughness and TPEs with super-elastic characteristics can be designed. Hence, fundamentally it offers a broad scope of application of these materials, in which physiological compatibility and transparency are added advantages. Thus, conceptually it could be shown, that by systematic variation of the architecture desired property profiles can be adjusted. Therefore the present work contributes to the development of application-oriented material concepts, which are interesting in engineering terms.
530

Effect of Thermal and Chemical Treatment of Soy Flour on Soy-Polypropylene Composite Properties

Guettler, Barbara Elisabeth 06 November 2014 (has links)
Soy flour (SF), a by-product of the soybean oil extraction processing, was investigated for its application in soy-polypropylene composites for interior automotive applications. The emphasis of this work was the understanding of this new type of filler material and the contribution of its major constituents to its thermal stability and impact properties. For this reason, reference materials were selected to represent the protein (soy protein isolate (SPI)) and carbohydrate (soy hulls (SH)) constituents of the soy flour. Additional materials were also investigated: the residue obtained after the protein removal from the soy flour which was called insoluble soy (IS), and the remaining liquid solution after acid precipitation of the proteins, containing mostly sugars and minerals, which was called soluble sugar extract (SSE). Two treatments, potassium permanganate and autoclave, were analyzed for their potential to modify the properties of the soy composite materials. An acid treatment with sulfuric acid conducted on soy flour was also considered. The soy materials were studied by thermogravimetric analysis (TGA) under isothermal (in air) and dynamic (in nitrogen) conditions. SPI had the highest thermal stability and SSE the lowest thermal stability for the early stage of the heating process. Those two materials had the highest amount of residual mass at the end of the dynamic TGA in nitrogen. The two treatments showed minimal effect on the isothermal thermal stability of the soy materials at 200 ??C. A minor improvement was observed for the autoclave treated soy materials. Fourier transformed infrared (FTIR) spectroscopy indicated that the chemical surface composition differed according to type of the soy materials but no difference could be observed for the treatments within one type of soy material. Contact angle analysis and surface energy estimation indicated differences of the surface hydrophobicity of the soy materials according to type of material and treatment. The initial water contact angle ranged from 57 ?? for SF to 85 ?? for SH. The rate of water absorption increased dramatically after the autoclave treatment for IS and SPI. Both materials showed the highest increase in the polar surface energy fraction. In general, the major change of the surface energy was associated with change of the polar fraction. After KMnO4 treatment, the polar surface energy of SF, IS and SPI decreased while SH showed a slight increase after KMnO4 treatment. A relationship between protein content and polar surface energy was observed and seen to be more pronounced when high protein containing soy materials were treated with KMnO4 and autoclave. Based on the polar surface energy results, the most suitable soy materials for polypropylene compounding are SPI (KMnO4), SH, and IS (KMnO4) because their polar surface energy are the lowest which should make them more compatible with non-polar polymers such as polypropylene. The soy materials were compounded as 30 wt-% material loading with an injection moulding grade polypropylene blend for different combinations of soy material treatment and coupling agents. Notched Izod impact and flexural strength as well as flexural modulus estimates indicated that the mechanical properties of the autoclaved SF decreased when compared to untreated soy flour while the potassium permanganate treated SF improved in impact and flexural properties. Combinations of the two treatments and two selected (maleic anhydride grafted polypropylene) coupling agents showed improved impact and flexural properties for the autoclaved soy flour but decreased properties for the potassium permanganate treated soy flour. Scanning electron microscopy of the fractured section, obtained after impact testing of the composite material, revealed different crack propagation mechanisms for the treated SF. Autoclaved SF had a poor interface with large gaps between the material and the polypropylene matrix. After the addition of a maleic anhydride coupling agent to the autoclaved SF and polypropylene formulation, the SF was fully embedded in the polymer matrix. Potassium permanganate treated SF showed partial bonding between the material and the polymer matrix but some of the material showed poor bonding to the matrix. The acid treated SF showed cracks through the dispersed phase and completely broken components that did not bind to the polypropylene matrix. In conclusion, the two most promising soy materials in terms of impact and flexural properties improvement of soy polypropylene composites were potassium permanganate treated SF and the autoclaved SF combined with maleic anhydride coupling agent formulation.

Page generated in 0.0583 seconds