• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 106
  • 86
  • 29
  • 20
  • 11
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 292
  • 292
  • 171
  • 77
  • 52
  • 51
  • 49
  • 48
  • 44
  • 42
  • 40
  • 39
  • 37
  • 37
  • 36
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Approximate Models And Solution Approaches For The Vehicle Routing Problem With Multiple Use Of Vehicles And Time Windows

De Boer, Jeroen Wouter 01 June 2008 (has links) (PDF)
In this study we discuss the Vehicle Routing Problem with multiple use of vehicles (VRPM). In this variant of the routing problem the vehicles may replenish at any time at the depot. We present a detailed review of existing literature and propose two mathematical models to solve the VRPM. For these two models and their several variants we provide computational results based on the test problems taken from the literature. We also discuss a case study in which we are simultaneously dealing with side constraints such as time windows, working hour limits, backhaul customers and a heterogeneous vehicle fleet.
52

Route Optimization For Solid Waste Transportation Using Parallel Hybrid Genetic Algorithms

Uskay, Selim Onur 01 December 2010 (has links) (PDF)
The transportation phase of solid waste management is highly critical as it may constitute approximately 60 to 75 percent of the total cost. Therefore, even a small amount of improvement in the collection operation can result in a significant saving in the overall cost. Despite the fact that there exist a considerable amount of studies on Vehicle Routing Problem (VRP), a vast majority of the existing studies are not integrated with GIS and hence they do not consider the path constraints of real road networks for waste collection such as one-way roads and U-Turns. This study involves the development of computer software that optimizes the waste collection routes for solid waste transportation considering the path constraints and road gradients. In this study, two different routing models are proposed. The aim of the first model is to minimize the total distance travelled whereas that of the second model is to minimize the total fuel consumption that depends on the loading conditions of the truck and the road gradient. A comparison is made between these two approaches. It is expected that the two approaches generate routes having different characteristics. The obtained results are satisfactory. The distance optimization model generates routes that are shorter in length whereas the fuel consumption optimization model generates routes that are slightly higher in length but provides waste collection on steeply inclined roads with lower truck load. The resultant routes are demonstrated on a 3D terrain view.
53

Inter- Auction Transport Optimization In Floriculture Industry

Ozer, Zubeyde Ozlem 01 August 2011 (has links) (PDF)
This study aims to improve transportation held between six auction centers, Inter-Auction Transportation, of FloraHolland. FloraHolland serves ninety eight percent of the Dutch market and is the largest auction in floriculture industry. The company wants to give the best sale opportunities with the costs as low as possible and this is the main initiative of this study. In this line of thought, FloraHolland wants to have a improvement on its current routing and scheduling mechanism. Exact models do not work due to the complexity and the size of the problem. Therefore, we developed a two-stage approach specific to this study. With this approach, we split exact approach into two, a mathematical model followed by a heuristic. In the exact approach, trucks are routed and scheduled at the same time. On the other hand, our solution approach first determines most efficient routes to be followed with Cycle Assignment Model and then, with Scheduling Heuristic, trucks are assigned to the routes, so within day transportation is planned in detail. Overall, each stage of this approach works in harmony and brings good solutions in a short CPU time.
54

Spatio-temporal multi-robot routing

Chopra, Smriti 08 June 2015 (has links)
We analyze spatio-temporal routing under various constraints specific to multi-robot applications. Spatio-temporal routing requires multiple robots to visit spatial locations at specified time instants, while optimizing certain criteria like the total distance traveled, or the total energy consumed. Such a spatio-temporal concept is intuitively demonstrable through music (e.g. a musician routes multiple fingers to play a series of notes on an instrument at specified time instants). As such, we showcase much of our work on routing through this medium. Particular to robotic applications, we analyze constraints like maximum velocities that the robots cannot exceed, and information-exchange networks that must remain connected. Furthermore, we consider a notion of heterogeneity where robots and spatial locations are associated with multiple skills, and a robot can visit a location only if it has at least one skill in common with the skill set of that location. To extend the scope of our work, we analyze spatio-temporal routing in the context of a distributed framework, and a dynamic environment.
55

Discrete Path Planing Strategies for Coverage and Multi-Robot Rendezvous

Mathew, Neil 12 December 2013 (has links)
This thesis addresses the problem of motion planning for autonomous robots, given a map and an estimate of the robot pose within it. The motion planning problem for a mobile robot can be defined as computing a trajectory in an environment from one pose to another while avoiding obstacles and optimizing some objective such as path length or travel time, subject to constraints like vehicle dynamics limitations. More complex planning problems such as multi-robot planning or complete coverage of an area can also be defined within a similar optimization structure. The computational complexity of path planning presents a considerable challenge for real-time execution with limited resources and various methods of simplifying the problem formulation by discretizing the solution space are grouped under the class of discrete planning methods. The approach suggests representing the environment as a roadmap graph and formulating shortest path problems to compute optimal robot trajectories on it. This thesis presents two main contributions under the framework of discrete planning. The first contribution addresses complete coverage of an unknown environment by a single omnidirectional ground rover. The 2D occupancy grid map of the environment is first converted into a polygonal representation and decomposed into a set of convex sectors. Second, a coverage path is computed through the sectors using a hierarchical inter-sector and intra-sector optimization structure. It should be noted that both convex decomposition and optimal sector ordering are known NP-hard problems, which are solved using a greedy cut approximation algorithm and Travelling Salesman Problem (TSP) heuristics, respectively. The second contribution presents multi-robot path-planning strategies for recharging autonomous robots performing a persistent task. The work considers the case of surveillance missions performed by a team of Unmanned Aerial Vehicles (UAVs). The goal is to plan minimum cost paths for a separate team of dedicated charging robots such that they rendezvous with and recharge all the UAVs as needed. To this end, planar UAV trajectories are discretized into sets of charging locations and a partitioned directed acyclic graph subject to timing constraints is defined over them. Solutions consist of paths through the graph for each of the charging robots. The rendezvous planning problem for a single recharge cycle is formulated as a Mixed Integer Linear Program (MILP), and an algorithmic approach, using a transformation to the TSP, is presented as a scalable heuristic alternative to the MILP. The solution is then extended to longer planning horizons using both a receding horizon and an optimal fixed horizon strategy. Simulation results are presented for both contributions, which demonstrate solution quality and performance of the presented algorithms.
56

The Plug-In Hybrid Electric Vehicle Routing Problem with Time Windows

Abdallah, Tarek 21 May 2013 (has links)
There is an increasing interest in sustainability and a growing debate about environmental policy measures aiming at the reduction of green house gas emissions across di erent economic sectors worldwide. The transportation sector is one major greenhouse gas emitter which is heavily regulated to reduce its dependance on oil. These regulations along with the growing customer awareness about global warming has led vehicle manufacturers to seek di erent technologies to improve vehicle e ciencies and reduce the green house gases emissions while at the same time meeting customer's expectation of mobility and exibility. Plug-in hybrid electric vehicles (PHEV) is one major promising solution for a smooth transition from oil dependent transportation sector to a clean electric based sector while not compromising the mobility and exibility of the drivers. In the medium term, plug-in hybrid electric vehicles (PHEV) can lead to signi cant reductions in transportation emissions. These vehicles are equipped with a larger battery than regular hybrid electric vehicles which can be recharged from the grid. For short trips, the PHEV can depend solely on the electric engine while for longer journeys the alternative fuel can assist the electric engine to achieve extended ranges. This is bene cial when the use pattern is mixed such that and short long distances needs to be covered. The plug-in hybrid electric vehicles are well-suited for logistics since they can avoid the possible disruption caused by charge depletion in case of all-electric vehicles with tight time schedules. The use of electricity and fuel gives rise to a new variant of the classical vehicle routing with time windows which we call the plug-in hybrid electric vehicle routing problem with time windows (PHEVRPTW). The objective of the PHEVRPTW is to minimize the routing costs of a eet of PHEVs by minimizing the time they run on gasoline while meeting the demand during the available time windows. As a result, the driver of the PHEV has two decisions to make at each node: (1) recharge the vehicle battery to achieve a longer range using electricity, or (2) continue to the next open time window with the option of using the alternative fuel. In this thesis, we present a mathematical formulation for the plug-in hybrid-electric vehicle routing problem with time windows. We solve this problem using a Lagrangian relaxation and we propose a new tabu search algorithm. We also present the rst results for the full adapted Solomon instances.
57

An Algorithm For The Capacitated Vehicle Routing Problem With Time Windows

Pehlivanoglu, Osman 01 October 2005 (has links) (PDF)
In this thesis the capacitated vehicle routing problem with time windows (VRPTW) is studied, where the objective is to serve a set of geographically dispersed customers with known demands and predefined time windows at the minimum cost. It is hard to find an optimal solution for the VRPTW even if the problem size is small. Therefore, many heuristic methods are developed to obtain near optimal solutions. In this study a local search algorithm is proposed for solving the VRPTW, which consist of route construction and route improvement phases. Computational experiments are conducted with Solomon (1987)&rsquo / s and Homberger and Gehring (1999)&rsquo / s problem sets in order to test the performance of the proposed algorithm. From the computational results encouraging results are obtained in terms of solution quality.
58

Localized genetic algorithm for the vehicle routing problem

Ursani, Ziauddin, Engineering & Information Technology, Australian Defence Force Academy, UNSW January 2009 (has links)
This thesis identifies some problems, the genetic algorithm (GA) is facing in the area of vehicle routing and proposes various methods to address those problems. Those problems arise from the unavailability of suitable chromosomal representation and evaluation schemes of GA for the Vehicle Routing Problem (VRP). The representation and evaluation schemes already in use have problems of high computational cost, illegal chromosomes (chromosomes not representing a legal tour) and wrong fitness assignment (fitness not truly representing chromosome genetic makeup). These problems are addressed by several proposed new schemes, namely the Self Imposed Constraints Evaluation scheme, the Contour and Reverse Contour Evaluation schemes and the Order Skipping Evaluation scheme, which are specifically tailored for various objectives, problems and situations. Apart from this, a methodology, which has previously being used in other meta-heuristics, is incorporated into GA i.e., the independent application of GA on various sub-localities of the problem. We call this GA, a Localized Genetic Algorithm (LGA). LGA is an iterative procedure between optimization and controlled de-optimization. The procedure of controlled de-optimization is also novel. It brings the solution into a new search space while controlling its cost effectively. LGA is introduced with various search techniques, i.e. intensive, extensive and selective, the use of which depends on the problem size and the availability of computational resources. Furthermore, search reduction techniques (Fitness Approximation Methods) are also introduced into the LGA, which has enabled the LGA to be applied to large scale problems. Due to the implementation of those proposals, LGA is the first GA-driven approach to be applied to very large scale CVRP problems of up to 1200 customers, i.e. datasets presented by Feiyue in 2005 and large scale VRPTW problems of up to 1000 customers, datasets presented by Gehring and Homberger in 1999. Lastly, a standard unit for computational comparison, i.e., Bellman's Evaluation Units BEUs, is also introduced to facilitate computational comparisons for future researchers. LGA has shown promising results on CVRP and VRPTW problems. It is flexible and also has the potential to be extended to not only other vehicle routing problems, but also to other ordering problems.
59

Optimisation de tournées de véhicules par programmation par contraintes : conception et développement d'un solveur industriel / Constraint programming methods for routing problems : design and implementation of an industrial solver

Ducomman, Sylvain 09 May 2017 (has links)
Les problèmes de tournées de véhicules sont des problèmes d’optimisation combinatoire épineux avec des enjeux économiques et environnementaux importants au sein de la chaîne logistique. Le problème fondamental est de desservir des clients avec un ensemble de véhicules de façon à minimiser la distance totale parcourue. En pratique, il y a une grande variété d’objectifs et de contraintes additionnelles, liées à la législation et à la diversité des domaines d’applications. Ces problèmes de tournées sont très fréquents pour de nombreuses industries et la conception d’approches de résolution génériques est devenue une question de recherche importante.Cette thèse porte sur la conception et le développement d’un nouveau moteur de résolution pour les logiciels de tournées de véhicules proposés par l’entreprise GEOCONCEPT. Le solveur mis au point s’appuie sur la programmation par contraintes (PPC) pour améliorer la flexibilité (prise en compte de contraintes additionnelles), la déclarativité et la maintenance qui sont les limites des solveurs actuels de GEOCONCEPT fondés sur la recherche locale.Dans un premier temps, un modèle de graphe est établi pour la représentation unifiée des données et de nombreuses contraintes métiers. La résolution s’effectue par des approches à base de voisinage large disponibles dans les solveurs de PPC modernes. On peut ainsi traiter des instances de très grandes tailles efficacement tout en conservant une approche déclarative pour exprimer une classe très large de problèmes de tournées de véhicules. Dans un second temps, des modèles PPC s’appuyant sur des représentations redondantes du problème sont proposés afin de renforcer le filtrage. Nous nous intéressons en détails aux mécanismes de filtrage c’est-à-dire aux processus d’élimination des valeurs infaisables ou sous-optimales dans les domaines des variables. Ces algorithmes permettent de simplifier rapidement le problème et de fournir des bornes inférieures afin d’évaluer la qualité des solutions obtenues. Les bornes inférieures sont obtenues en résolvant des relaxations du plus célèbre des problèmes de la Recherche Opérationnelle : le problème du voyageur de commerce (TSP). Ce problème est le cœur de la contrainte globale weightedcircuit permettant de modéliser les problèmes de tournées en PPC. Nous proposons de nouveaux mécanismes de filtrage pour cette contrainte s’appuyant sur trois relaxations du TSP. Ces relaxations sont comparées sur les plans théorique et expérimental. L’originalité de ce travail est de proposer un nouvel algorithme de filtrage permettant de raisonner à la fois sur les successeurs directs d’un client et sur sa position dans la tournée. Ces raisonnements sont particulièrement utiles en présence de contraintes de fenêtres de temps, très communes dans les problèmes industriels.Le nouveau moteur de résolution offre d’excellentes performances sur des problèmes académiques et industriels tout en proposant des bornes inférieures informatives à des problèmes industriels réels. / Vehicle routing problems are very hard combinatorial optimization problems with significant economic and environmental challenges. The fundamental problem is to visit a set of customers with a given fleet of vehicles in order to minimize the total distance travelled. Moreover, these problems arise with a wide variety of objectives and additional constraints, related to the legislation and the diversity of industrial sectors. They are very common for many industries and the design of generic solvers has become an important research issue.This thesis focuses on the design and implementation of a new solver for the vehicle routing services offered by the company GEOCONCEPT. The proposed solver is based on constraint programming (CP) to improve flexibility (ability to take additional constraints into account), declarative modelling and maintenance, which are the limits of current GEOCONCEPT solvers based on local search.Firstly, a graph model is established to provide a common representation of the input-data and the numerous business constraints. The resolution is performed using large neighbourhood search methods available in modern CP solvers. It is thus possible to deal with large instances efficiently with a declarative approach where a broad class of vehicle routing problems can be modelled. Secondly, several CP models based on redundant views of the problem are proposed to strengthen the filtering. We focus on the filtering mechanisms for removing infeasible or suboptimal values in the domains of the variables. These algorithms can quickly simplify the problem and derive lower bounds to assert the quality of the solutions found. The lower bounds are obtained by solving relaxations of the most famous problem in Operations Research: the Traveling Salesman Problem (TSP). This problem is the core of the global constraint WEIGTEHDCIRCUIT for modelling routing problems in CP. We propose new filtering algorithms for this constraint based on three relaxations of the TSP. These relaxations are compared theoretically and experimentally. The originality of this work is to propose a new filtering algorithm for reasoning on the direct successors of a customer as well as his position in the tour. It is particularly useful in the presence of time window constraints, which are very common in industrial problems.The new solver shows excellent performance on academic and industrial problems and can compute informative lower bounds for real-life problems.
60

Motion planning and control: a formal methods approach

Vasile, Cristian-Ioan 21 June 2016 (has links)
Control of complex systems satisfying rich temporal specification has become an increasingly important research area in fields such as robotics, control, automotive, and manufacturing. Popular specification languages include temporal logics, such as Linear Temporal Logic (LTL) and Computational Tree Logic (CTL), which extend propositional logic to capture the temporal sequencing of system properties. The focus of this dissertation is on the control of high-dimensional systems and on timed specifications that impose explicit time bounds on the satisfaction of tasks. This work proposes and evaluates methods and algorithms for synthesizing provably correct control policies that deal with the scalability problems. Ideas and tools from formal verification, graph theory, and incremental computing are used to synthesize satisfying control strategies. Finite abstractions of the systems are generated, and then composed with automata encoding the specifications. The first part of this dissertation introduces a sampling-based motion planning algorithm that combines long-term temporal logic goals with short-term reactive requirements. The specification has two parts: (1) a global specification given as an LTL formula over a set of static service requests that occur at the regions of a known environment, and (2) a local specification that requires servicing a set of dynamic requests that can be sensed locally during the execution. The proposed computational framework consists of two main ingredients: (a) an off-line sampling-based algorithm for the construction of a global transition system that contains a path satisfying the LTL formula, and (b) an on-line sampling-based algorithm to generate paths that service the local requests, while making sure that the satisfaction of the global specification is not affected. The second part of the dissertation focuses on stochastic systems with temporal and uncertainty constraints. A specification language called Gaussian Distribution Temporal Logic is introduced as an extension of Boolean logic that incorporates temporal evolution and noise mitigation directly into the task specifications. A sampling-based algorithm to synthesize control policies is presented that generates a transition system in the belief space and uses local feedback controllers to break the curse of history associated with belief space planning. Switching control policies are then computed using a product Markov Decision Process between the transition system and the Rabin automaton encoding the specification.The approach is evaluated in experiments using a camera network and ground robot. The third part of this dissertation focuses on control of multi-vehicle systems with timed specifications and charging constraints. A rich expressivity language called Time Window Temporal Logic (TWTL) that describes time bounded specifications is introduced. The temporal relaxation of TWTL formulae with respect to the deadlines of tasks is also discussed. The key ingredient of the solution is an algorithm to translate a TWTL formula to an annotated finite state automaton that encodes all possible temporal relaxations of the given formula. The annotated automata are composed with transition systems encoding the motion of all vehicles, and with charging models to produce control strategies for all vehicles such that the overall system satisfies the mission specification. The methods are evaluated in simulation and experimental trials with quadrotors and charging stations.

Page generated in 0.0607 seconds