• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 238
  • 54
  • 52
  • 31
  • 10
  • 5
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 515
  • 515
  • 138
  • 69
  • 68
  • 67
  • 58
  • 55
  • 51
  • 51
  • 44
  • 37
  • 37
  • 36
  • 36
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Propagation of weak shock waves in nonlinear solids

Fu, Y. January 1988 (has links)
No description available.
42

Operation-based update propagation in a mobile file system. / CUHK electronic theses & dissertations collection

January 2000 (has links)
Lee, Yui-Wah. / "January 2000." / Thesis (Ph.D.)--Chinese University of Hong Kong, 2000. / Includes bibliographical references (p. 180-187). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Mode of access: World Wide Web. / Abstracts in English and Chinese.
43

Radio propagation modeling by neural networks. / CUHK electronic theses & dissertations collection

January 1996 (has links)
by Qin Zhou. / Thesis (Ph.D.)--Chinese University of Hong Kong, 1996. / Includes bibliographical references (p. 196-205). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Mode of access: World Wide Web.
44

The ionospheric gyro-selfinteraction of radio waves at vertical incidence

Aitchison, Gordon James. January 1957 (has links) (PDF)
Typewritten copy Includes bibliography.
45

Wave propagation in sandwich structure

Sander Tavallaey, Shiva January 2001 (has links)
No description available.
46

Spectral Analysis of Wave Propagation Through a Polymeric Hopkinson Bar

Salisbury, Christopher January 2001 (has links)
The importance of understanding non-metallic material behaviour at high strain rates is becoming ever more important as new materials are being developed and used in shock loading applications. Applying conventional methods for high strain rate testing to non-metallic materials proved ineffective due to impedance mismatch between the specimen and apparatus and so a new test method was developed. A polymeric Hopkinson bar was developed enabling non-metallic materials, such as polycarbonate and rubber, to be tested at strain rates from 500 s^-1 to 4000 s^-1. Conventional Hopkinson bar analysis is invalid due to the viscoelastic nature of the polymeric bar material. As waves propagate along the bar length, the inherent material behaviour causes the waves to undergo a degree of attenuation and dispersion. Through the use of spectral analysis, a comparison of the dispersive relationships for 6061 T-6 aluminium, extruded acrylic and low density polyethylene is presented. The application of spectral methods to viscoelastic wave analysis was validated by three separate methods. A comparison of predicted and measured waves along the bar length allowed the dispersive relationship to be substantiated. The use of an enhanced laser velocity system further verified the predicted wave magnitude. A comparison of results for polycarbonate and ballistic gelatin to published results showed good agreement.
47

Spectral Analysis of Wave Propagation Through a Polymeric Hopkinson Bar

Salisbury, Christopher January 2001 (has links)
The importance of understanding non-metallic material behaviour at high strain rates is becoming ever more important as new materials are being developed and used in shock loading applications. Applying conventional methods for high strain rate testing to non-metallic materials proved ineffective due to impedance mismatch between the specimen and apparatus and so a new test method was developed. A polymeric Hopkinson bar was developed enabling non-metallic materials, such as polycarbonate and rubber, to be tested at strain rates from 500 s^-1 to 4000 s^-1. Conventional Hopkinson bar analysis is invalid due to the viscoelastic nature of the polymeric bar material. As waves propagate along the bar length, the inherent material behaviour causes the waves to undergo a degree of attenuation and dispersion. Through the use of spectral analysis, a comparison of the dispersive relationships for 6061 T-6 aluminium, extruded acrylic and low density polyethylene is presented. The application of spectral methods to viscoelastic wave analysis was validated by three separate methods. A comparison of predicted and measured waves along the bar length allowed the dispersive relationship to be substantiated. The use of an enhanced laser velocity system further verified the predicted wave magnitude. A comparison of results for polycarbonate and ballistic gelatin to published results showed good agreement.
48

Wave propagation in sandwich structure

Sander Tavallaey, Shiva January 2001 (has links)
No description available.
49

A study of latitudinal distributions of total electron content using radio signals from a transit satellite.

Ma, Hung-kin, John. January 1971 (has links)
Thesis (M. Sc.)--University of Hong Kong, 1972. / Mimeographed.
50

Channel probing for an indoor wireless communications channel /

Hunter, Brandon Rosel, January 2003 (has links) (PDF)
Thesis (M.S.)--Brigham Young University. Dept. of Electrical and Computer Engineering, 2003. / Includes bibliographical references (p. 65-66).

Page generated in 0.0334 seconds