Spelling suggestions: "subject:"[een] WEATHER EFFECT"" "subject:"[enn] WEATHER EFFECT""
1 |
LEE VORTICITY PRODUCTION BY TROPICAL MOUNTAIN RANGESMOZER, JOEL BARNEY January 1994 (has links)
Numerical simulations using the Penn State University/NCAR MM4 model are performed to examine a stably stratified, zonal easterly flow past large scale three-dimensional mountain ranges in a rotating, initially barotropic, atmosphere. Upstream blocking by the mountain range diverts the flow primarily to the south and around the mountain. Conservation of potential vorticity results in the formation of a horizontal jet at low levels south of the mountain. This jet is barotropically unstable and leads to a continuous production of synoptic scale vorticity maxima which separate from the mountain and propagate downstream. Numerical simulations using topography representative of the Sierra Madre in Mexico imply that this mechanism may be important in providing some of the initial disturbances which grow into tropical cyclones in the eastern North Pacific Ocean. The wave train produced in the simulations corresponds to waves with 3-7 day periods which have been identified observationally in the eastern North Pacific region. The sensitivity of this effect to the stability of the basic state and the upstream wind speed is investigated. Simulations are also performed which show that the Hoggar and Atlas mountains of west-central Africa block the low-level easterlies resulting in a barotropically unstable jet and a train of vorticity maxima which separate from the mountain and propagate downstream. The spacing of these disturbances is roughly 1600 km and they propagate to the east with a period of about 2.5 days. These characteristics correspond to those of observed waves in the Africa/Atlantic region. It will also be shown that the unique topography of north-central Africa results in a mid-tropospheric easterly jet which has a maximum between 0-10°E and 15-20°N. The location and magnitude of this jet correspond to the so-called African easterly jet which is usually attributed to the strong surface temperature gradients over the continent of Africa. The numerical simulations presented in this work suggest that the mechanical effect of the topography may provide a constant source of energy for the maintenance of the African easterly jet.
|
2 |
Wintertime precipitation patterns in the Montréal regionHrebenyk, Bohdan W. January 1979 (has links)
No description available.
|
3 |
The influence of orography on an East Coast storm, as simulated by the NCAR GCMSheldon, John Palmer January 1978 (has links)
Thesis. 1978. M.S.--Massachusetts Institute of Technology. Dept. of Meteorology. / Microfiche copy available in Archives and Science. / Bibliography: leaves 177-178. / by John P. Sheldon. / M.S.
|
4 |
[en] FOG AND RAIN ATTENUATION MODELS FOR THE DESIGN OF FSO LINKS IN 5G+ / [pt] MODELOS DE ATENUAÇÃO DE NEBLINA E CHUVA PARA O PROJETO DE ENLACES FSO EM 5G+CLARA ELIZABETH VERDUGO MUNOZ 22 August 2022 (has links)
[pt] A óptica de espaço livre (FSO), inicialmente estudada na década de 60,
está atraindo atenção no contexto dos sistemas 5G+, que exige tecnologias de
back-hauling sem fio com taxas de dados extremamente altas em distâncias de
poucos quilômetros. A atual falta de um modelo global de perda de percurso
para FSO motiva o estudo do comportamento do enlace óptico sob diferentes
condições atmosféricas. Esta tese trata do desenvolvimento de modelos para
prever a atenuação devido a neblina e chuva para projetar enlaces FSO em
tecnologias 5G e além. Estudamos os bancos de dados de medições de superfície
disponíveis em todo o mundo como referência para analisar as respostas do
FSO considerando os dados disponíveis de longo prazo e descobrimos que o
maior impacto na visibilidade em todo o mundo é causado por neblina, neve e
chuva. Assim, selecionamos neblina e chuva como o foco deste estudo. Vários
modelos de perda de percurso, baseados na visibilidade, são avaliados através
de uma abordagem analítica. Propomos modelos de limite inferior e superior
para estimar a atenuação específica devido ao nevoeiro considerando incertezas
quanto à sensibilidade da atenuação específica, gama, em função da visibilidade em
1.550 micrômetros e o melhor ajuste aos resultados do modelo microfísico. Com relação
à atenuação causada pela chuva, estudamos modelos disponíveis na literatura
para enlaces de micro-ondas e os modificamos para aplicação em enlaces FSO.
Quando os efeitos de espalhamento múltiplo são considerados, foi encontrada
uma redução significativa na atenuação da chuva. Construímos a partir dos
modelos, um método para combinar estatisticamente a atenuação em enlaces
FSO causada por diferentes condições climáticas. O desempenho dos enlaces
ópticos é avaliado em termos do máximo comprimento do enlace em relação à
disponibilidade sob quatro condições climáticas: (i) somente chuva, (ii) somente
neblina, (iii) chuva e neblina, e (iv) e todas as condições. Finalmente, eventos
experimentais para os enlaces FSO e mmWave implementados no campus
Leonardo do Politecnico di Milano são classificados e analisados dependendo
do efeito atmosférico estudado: chuva estratiforme, chuva convectiva, chuva
leve, vento, neblina pesada, neve e outros. / [en] Free-space optics (FSO), initially studied in the 60s, is attracting attention in the frame of 5G+ systems, which demands wireless back-hauling
technologies with extremely high data rates over distances up to a few kilometers. The current lack of a global path loss model for FSO motivates studying
the optical link s behavior under different atmospheric conditions. This thesis deals with the development of models for predicting the attenuation due
to fog and rain for designing FSO links in 5G and beyond technologies. We
study extensive surface measurement databases worldwide as a benchmark for
analyzing FSO responses considering available long-term data. We find that
the highest impact on visibility worldwide is caused by fog, snow, and rain.
Thus, we select fog and rain as the focus of this study. Several path loss models
based on visibility are assessed. We propose lower and upper-bound models to
estimate the specific attenuation, gamma, due to fog which considers uncertainties
as the sensitivity of gamma to the visibility at 1.550 µm and a micro-physical model
of fog. Regarding attenuation caused by rain, we study models available in the
literature for microwave links and modify them for application to FSO. When
the multiple scattering effects are considered, a significant reduction in the
rain attenuation has been found. From the findings, we build a method to statistically combine the attenuation effects on FSO caused by different weather
conditions. The performance of FSO links is assessed in terms of the maximum
link range against availability under four weather conditions: (i) rain only, (ii)
fog only, (iii) rain and fog, and (iv) all conditions. Finally, experimental events
for FSO and mmWave links implemented at Leonardo Campus of Politecnico
di Milano are classified and analyzed depending on the studied atmospheric
effects: stratiform rain, convective rain, light rain, wind, heavy fog, snow, and
others.
|
5 |
Integrated System Model Reliability Evaluation and Prediction for Electrical Power Systems: Graph Trace Analysis Based SolutionsCheng, Danling 14 October 2009 (has links)
A new approach to the evaluation of the reliability of electrical systems is presented. In this approach a Graph Trace Analysis based approach is applied to integrated system models and reliability analysis. The analysis zones are extended from the traditional power system functional zones. The systems are modeled using containers with iterators, where the iterators manage graph edges and are used to process through the topology of the graph. The analysis provides a means of computationally handling dependent outages and cascading failures. The effects of adverse weather, time-varying loads, equipment age, installation environment, operation conditions are considered. Sequential Monte Carlo simulation is used to evaluate the reliability changes for different system configurations, including distributed generation and transmission lines. Historical weather records and loading are used to update the component failure rates on-the-fly. Simulation results are compared against historical reliability field measurements.
Given a large and complex plant to operate, a real-time understanding of the networks and their situational reliability is important to operational decision support. This dissertation also introduces using an Integrated System Model in helping operators to minimize real-time problems. A real-time simulation architecture is described, which predicts where problems may occur, how serious they may be, and what is the possible root cause. / Ph. D.
|
Page generated in 0.0424 seconds