• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

[en] THE OPTIMIZATION OF PETROLEUM FIELD EXPLORATION ALTERNATIVES USING EVOLUTIONARY COMPUTATION / [pt] OTIMIZAÇÃO DE ALTERNATIVAS PARA DESENVOLVIMENTO DE CAMPO DE PETRÓLEO UTILIZANDO COMPUTAÇÃO EVOLUCIONÁRIA

LUCIANA FALETTI ALMEIDA 21 May 2003 (has links)
[pt] Esta dissertação investiga um sistema baseado em algoritmos genéticos e algoritmos culturais, aplicado ao processo de desenvolvimento de um campo de petróleo. O desenvolvimento de um campo de petróleo consiste, neste caso, da disposição de poços num reservatório petrolífero, já conhecido e delimitado, que permita maximizar o Valor Presente Líquido. Uma disposição de poços define a quantidade e posição de poços produtores e injetores e do tipo de poço (horizontalou vertical) a serem empregados no processo de exploração. O objetivo do trabalho é avaliar o desempenho de Algoritmos Genéticos e Algoritmos Culturais como métodos de apoio à decisão na otimização de alternativas de produção em reservatórios petrolíferos. Determinar a localização de novos poços de petróleo em um reservatório é um problema complexo que depende de propriedades do reservatório e critérios econômicos, entre outros fatores. Para que um processo de otimização possa ser aplicado nesse problema, é necessário definir uma função objetivo a ser minimizada ou maximizada pelo processo. No problema em questão, a função objetivo a ser maximizada é o Valor Presente Líquido (VPL). Para se estabelecer o VPL, subtrai-se os gastos com a exploração do valor correspondente ao volume de petróleo estimado da reserva. Devido à complexidade do perfil de produção de petróleo, exige-se a utilização de simuladores de reservatório para esta estimativa. Deste modo, um simulador de reservatórios é parte integrante da função de avaliação. O trabalho de pesquisa foi desenvolvido em quatro etapas: um estudo sobre a área de exploração de petróleo; um estudo dos modelos da inteligência computacional empregados nesta área; a definição e implementação de um modelo genético e cultural para o desenvolvimento de campo petrolífero e o estudo de caso. O estudo sobre a área de exploração de campo de petróleo envolveu a teoria necessária para a construção da função objetivo. No estudo sobre as técnicas de inteligência computacional definiu-se os conceitos principais sobre Algoritmo Genético e Algoritmo Cultural empregados nesta dissertação. A modelagem de um Algoritmo Genético e Cultural constitui no emprego dos mesmos, para que dado um reservatório petrolífero, o sistema tenha condições de reconhecê-lo e desenvolvê-lo, ou seja, encontrar a configuração (quantidade, localização e tipo de poços) que atinja um maior Valor Presente Líquido. Os resultados obtidos neste trabalho indicam a viabilidade da utilização de Algoritmos Genéticos e Algoritmos Culturais no desenvolvimento de campos de petróleo. / [en] This dissertation investigates a system based in genetic algorithms and cultural algorithms, applied to the development process of a petroleum field. The development of a petroleum field consists in the placement of wells in an already known and delimited petroleum reservoir, which allows maximizing the Net Present Value. A placement of wells defines the quantity and position of the producing wells, the injecting wells, and the wells type (horizontal or vertical) to be used in the exploration process. The objective of this work is to evaluate the performance of Genetic Algorithms and Cultural Algorithms as decision support methods on the optimization of production alternatives in petroleum reservoirs. Determining the new petroleum wells location in a reservoir is a complex problem that depends on the properties of the reservoir and on economic criteria, among other factors. In order to an optimization process to be applied to this problem, it s necessary to define a target function to be minimized or maximized by the process. In the given problem, the target function to be maximized is the Net Present Value (NPV). In order to establish the NPV, the exploration cost correspondent to the estimated reservoir petroleum volume is deducted. The complexity of the petroleum s production profile implies on the use of reservoirs simulators for this estimation. In this way, a reservoir simulator is an integrant part of the evaluation function. The research work was developed in four phases: a study about the petroleum exploration field; a study about the applied computational intelligence models in this area; the definition and implementation of a genetic and cultural model for the development of petroliferous fields and the case study. The study about the petroleum exploration field involved all the necessary theory for the building of the target function. In the study about the computational intelligence techniques, the main concepts about the Genetic Algorithms and Cultural Algorithms applied in this dissertation were defined. The modeling of Genetic and Cultural Algorithms consisted in applying them so that, given a petroleum reservoir, the system is capable of evolve and find configurations (quantity, location and wells type) that achieve greater Net Present Values. The results obtained in this work, indicate that the use of Genetic Algorithms and Cultural Algorithms in the development of petroleum fields is a promising alternative.
2

[en] QUANTUM-INSPIRED EVOLUTIONARY ALGORITHMS FOR PROBLEMS BASED ON NUMERICAL REPRESENTATION / [pt] ALGORITMOS EVOLUTIVOS COM INSPIRAÇÃO QUÂNTICA PARA PROBLEMAS COM REPRESENTAÇÃO NUMÉRICA

ANDRE VARGAS ABS DA CRUZ 25 September 2007 (has links)
[pt] Desde que foram propostos como método de otimização, os algoritmos evolutivos têm sido usados com sucesso para resolver problemas complexos nas mais diversas áreas como, por exemplo, o projeto automático de circuitos e equipamentos, planejamento de tarefas, engenharia de software e mineração de dados, entre tantos outros. Este sucesso se deve, entre outras coisas, ao fato desta classe de algoritmos não necessitar de formulações matemáticas rigorosas a respeito do problema que se deseja otimizar, além de oferecer um alto grau de paralelismo no processo de busca. No entanto, alguns problemas são computacionalmente custosos no que diz respeito à avaliação das soluções durante o processo de busca, tornando a otimização por algoritmos evolutivos um processo lento para situações onde se deseja uma resposta rápida do algoritmo (como por exemplo, problemas de otimização online). Diversas maneiras de se contornar este problema, através da aceleração da convergência para boas soluções, foram propostas, entre as quais destacam-se os Algoritmos Culturais e os Algoritmos Co-Evolutivos. No entanto, estes algoritmos ainda têm a necessidade de avaliar muitas soluções a cada etapa do processo de otimização. Em problemas onde esta avaliação é computacionalmente custosa, a otimização pode levar um tempo proibitivo para alcançar soluções ótimas. Este trabalho propõe um novo algoritmo evolutivo para problemas de otimização numérica (Algoritmo Evolutivo com Inspiração Quântica usando Representação Real - AEIQ- R), inspirado no conceito de múltiplos universos da física quântica, que permite realizar o processo de otimização com um menor número de avaliações de soluções. O trabalho apresenta a modelagem deste algoritmo para a solução de problemas benchmark de otimização numérica, assim como no treinamento de redes neurais recorrentes em problemas de aprendizado supervisionado de séries temporais e em aprendizado por reforço em tarefas de controle. Os resultados obtidos demonstram a eficiência desse algoritmo na solução destes tipos de problemas. / [en] Since they were proposed as an optimization method, the evolutionary algorithms have been successfully used for solving complex problems in several areas such as, for example, the automatic design of electronic circuits and equipments, task planning and scheduling, software engineering and data mining, among many others. This success is due, among many other things, to the fact that this class of algorithms does not need rigorous mathematical formulations regarding the problem to be optimized, and also because it offers a high degree of parallelism in the search process. However, some problems are computationally intensive when it concerns the evaluation of solutions during the search process, making the optimization by evolutionary algorithms a slow process for situations where a quick response from the algorithm is desired (for instance, in online optimization problems). Several ways to overcome this problem, by speeding up convergence time, were proposed, including Cultural Algorithms and Coevolutionary Algorithms. However, these algorithms still have the need to evaluate many solutions on each step of the optimization process. In problems where this evaluation is computationally expensive, the optimization might take a prohibitive time to reach optimal solutions. This work proposes a new evolutionary algorithm for numerical optimization problems (Quantum- Inspired Evolutionary Algorithm for Problems based on Numerical Representation - QIEA-R), inspired in the concept of quantum superposition, which allows the optimization process to be carried on with a smaller number of evaluations. The work presents the modelling for this algorithm for solving benchmark numerical optimization problems, and for training recurrent neural networks in supervised learning and reinforcement learning. The results show the good performance of this algorithm in solving these kinds of problems.

Page generated in 0.0415 seconds