• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

[en] FUNCTIONALLY GRADED MATERIALS ON THE DYNAMIC BEHAVIOR OF FLEXIBLE RISERS / [pt] MATERIAIS COM GRADAÇÃO FUNCIONAL NO COMPORTAMENTO DINÂMICO DE LINHAS FLEXÍVEIS

JUAN CARLOS ROMERO ALBINO 17 April 2012 (has links)
[pt] Neste trabalho um novo elemento de viga co-rotacionado é apresentado para a análise não-linear geométrica tridimensional, estática e dinâmica, de linhas marítimas de Materiais com Gradação Funcional (MGF). Assume-se que o módulo de elasticidade e a massa específica do material da viga variam ao longo da espessura da seção transversal tubular de acordo com uma lei de potência. Na discretização espacial das equações de equilíbrio, a linha marítima é representada por um elemento de viga de dois nós, com base nas hipóteses do modelo para vigas de Euler-Bernoulli, em que polinômios cúbicos de Hermite são utilizados na interpolação dos deslocamentos nodais e a cinemática do movimento é descrita através de grandezas referidas a um sistema coordenado local co-rotacionado. Consideram-se não linearidades geométricas envolvendo grandes deslocamentos e rotações, mas com pequenas deformações. Nas equações de movimento da linha marítima, são consideradas as seguintes influencias: do peso próprio, do empuxo, dos carregamentos hidrodinâmicos (devidos às ações de ondas, correntes e forças de massa adicional), dos deslocamentos prescritos (junto à fixação da embarcação), da ação de flutuadores e das forças de interação solo-estrutura. A integração temporal das equações de equilíbrio é realizada utilizando-se o algoritmo de discretização HHT (Hilbert-Hughes-Taylor) e a solução numérica obtida com a técnica iterativa de Newton Raphson. A metodologia numérica foi implementada e diversos exemplos são apresentados e discutidos enfatizando-se as diferenças de comportamento estrutural entre os modelos de viga com MGF e com material homogêneo. Resultados referentes a situações práticas da engenharia offshore são também tratados nos exemplos. / [en] This work presents a new co-rotational beam element formulation to model the geometric three-dimensional static and dynamic nonlinear analysis of risers of Functionally Graded Materials (FGM). The material modulus of elasticity and density of the beam are assumed to vary through the pipe cross-section thickness following a power law function. In the spatial discretization of the riser equilibrium equations, a two node beam element based on Euler-Bernoulli theory is considered, with cubic Hermitian interpolation functions used for nodal displacement interpolations and element kinematics, all referred to a co-rotation coordinate system attached to the element local frame. In the element model, geometric non-linear effects are considered, involving large displacements and rotations but small strains. The motion of the riser results from the following applied forces: self weight, buoyancy, hydrodynamic (due to maritime waves, currents and added mass inertia), prescribed displacements (at the floating platform), action of floaters and seabed-structure interactions. Step-by-step time integration of the equilibrium equations is performed with HHT (Hilbert-Hughes- Taylor) algorithm and the numerical solution is obtained using the Newton- Raphson iterative technique. The methodology has been implemented and various sample results presented, that highlight the behavior of functionally graded material beams as compared to homogeneous beams. Applications related to practical offshore engineering situations are also considered.

Page generated in 0.0372 seconds