1 |
[en] AUTOMATED SYSTEM FOR MAPPING FERROMAGNETIC FOREIGN BODIES USING GMI MAGNETOMETER / [pt] SISTEMA AUTOMATIZADO PARA MAPEAMENTO DE CORPOS ESTRANHOS FERROMAGNÉTICOS UTILIZANDO MAGNETÔMETRO GMIBRYAN RODRIGUES CUPELLO DE OLIVEIRA 01 February 2021 (has links)
[pt] A informação sobre o posicionamento de objetos estranhos no interior do corpo humano é essencial para a sua eficiente remoção cirúrgica. Entretanto, os métodos convencionalmente utilizados não fornecem informação suficiente sobre a localização do objeto metálico para garantia de sucesso cirúrgico. No presente trabalho foi desenvolvido um sistema automatizado para mapear a densidade de fluxo magnético estático produzido por corpos ferromagnéticos posicionados em variados graus de liberdade 3D, utilizando um sensor de baixo custo, baseado no fenômeno da magnetoimpedância gigante (GMI - Giant Magnetoimpedance), que detecta somente campos magnéticos variantes no tempo. Assim, as medições automatizadas foram realizadas com a amostra em movimento a uma velocidade constante. Por meio de modelagens computacionais do campo magnético gerado foi possível reproduzir o comportamento da densidade de fluxo magnético gerado por uma fonte de campo magnético como a agulha retilínea utilizada nas medições in vitro. O software considerou as características do sensor GMI utilizado e a condição de medição com a fonte magnética em movimento. Os resultados da simulação foram validados por meio de comparações com os resultados experimentais, possibilitando a solução do problema direto com a caracterização da configuração espacial da densidade de fluxo magnético para variados posicionamentos da fonte magnética em relação ao sensor magnético GMI. Com a validação dos resultados simulados, os mesmos podem ser empregados no desenvolvimento de procedimento para solução do problema inverso de imageamentos clínicos utilizando o sensor GMI de baixo custo, limitado a medições magnéticas variantes no tempo, realizados para detecção e posicionamento de corpos estranhos que geram campos magnéticos estáticos. / [en] Information about the positioning of foreign objects inside the human body is essential for its efficient surgical removal. However, the methods conventionally used do not provide sufficient information on the location of the metallic object to guarantee surgical success. In the present work, an automated system was developed to map the static magnetic flux density produced by ferromagnetic bodies positioned in varying degrees of 3D freedom, using a low-cost sensor based on the giant magnetoimpedance phenomenon (GMI - Giant Magnetoimpedance), which detects only time-varying magnetic fields. Thus, automated measurements were performed with the sample moving at a constant speed. Through computational modeling of the generated magnetic field, it was possible to reproduce the behavior of the magnetic flux density generated by a magnetic field source, such as the straight needle used in in vitro measurements. The software considered the GMI sensor s characteristics and the measurement condition with the magnetic source in motion. The simulation results were validated through comparisons with the experimental results, enabling the solution of the direct problem with the characterization of the spatial configuration of the magnetic flux density for various magnetic source positions in relation to the GMI magnetic sensor. With the validation of the simulated results, they can be used in the development of a procedure to solve the inverse problem of clinical imaging using the low-cost GMI sensor, limited to time-varying magnetic measurements, performed for the detection and positioning of foreign bodies that generate static magnetic fields.
|
2 |
[pt] ALGORITMOS GENÉTICOS APLICADOS À SOLUÇÃO DO PROBLEMA INVERSO BIOMAGNÉTICO / [en] GENETIC ALGORITHMS APPLIED TO THE SOLUTION OF THE BIOMAGNETIC INVERSE PROBLEMJOHNNY ALEXANDER BASTIDAS OTERO 09 December 2016 (has links)
[pt] Sinais bioelétricos fornecem informações importantes sobre a função fisiológica de muitos organismos vivos. Em magnetismo, denomina-se problema direto aquele em que se determina o campo magnético a partir do conhecimento da fonte de corrente que o gerou. Por outro lado, existem situações em que se deseja determinar a fonte de corrente a partir de valores de campo magnético medidos. Esse tipo de problema é usual em Biomagnetismo e é denominado problema inverso. Por exemplo, com base em medições do campo magnético cardíaco é possível inferir sobre a atividade elétrica, no tecido cardíaco, que foi responsável por sua geração. Este trabalho propõe, apresenta e discute uma nova técnica destinada a resolver o problema biomagnético inverso, por meio de algoritmos genéticos. Objetiva-se estimar a posição, a orientação e a magnitude dos dipolos de corrente equivalentes, responsáveis pela geração de mapas de campos biomagnéticos obtidos experimentalmente por meio de medições realizadas em corações isolados de coelho utilizando um sistema SQUID de 16 canais. O algoritmo busca identificar a distribuição de dipolos que melhor se ajusta aos dados experimentais, objetivando minimizar o erro entre o mapa de campo magnético medido e o obtido por meio das soluções estimadas. O conhecimento dos parâmetros dos dipolos de corrente, em diferentes instantes de tempo, permite a correta interpretação e análise da informação médica obtida a partir dos campos biomagnéticos medidos experimentalmente, auxiliando na definição de diagnósticos e orientação de abordagens terapêuticas. / [en] Bioelectric signals provide important information about the physiological function of many living organisms. In magnetism, the so-called direct problem deals with the determination of the magnetic field associated to well known current sources. On the other hand, there are situations where it is necessary to determine the current source responsible for the generation of a measured magnetic field. This type of problem is common in Biomagnetism and is called inverse problem. For example, based on cardiac magnetic field measurements it is possible to infer the electrical activity in the heart tissue, responsible for its generation. This work proposes, presents and discusses a new technique designed to solve the biomagnetic inverse problem by genetic algorithms. It is intended to estimate the position, orientation and magnitude of the equivalent current dipoles, responsible for the generation of biomagnetic field maps measured with a 16 channel SQUID system. The algorithm attempts to identify the distribution of dipoles that best fits the measured experimental data, aiming at minimizing the error between the experimental magnetic field maps and those obtained by the estimated solutions. The experimental data analyzed in this study were acquired by measurements in isolated rabbit hearts. The knowledge of parameters of current dipoles at different instants of time allows the correct interpretation and analysis of medical information obtained from the experimentally measured biomagnetic fields, providing diagnosis and guiding therapeutic procedures.
|
Page generated in 0.0283 seconds