1 |
[pt] ANÁLISE NÃO LINEAR DE FLAMBAGEM E VIBRAÇÕES DE PERFIS PULTRUDADOS DE SEÇÃO CANTONEIRA / [en] NONLINEAR BUCKLING AND VIBRATION ANALYSIS OF PULTRUDED ANGLE SECTION COLUMNSLEYSER PACHECO PIRES FILHO 13 June 2024 (has links)
[pt] Elementos de paredes finas com seções transversais abertas têm sido
amplamente empregados em aplicações de engenharia. Embora as aplicações
convencionais e os códigos de projeto se concentrem predominantemente em
elementos de aço, observa-se um interesse crescente no uso de materiais
alternativos, especialmente compósitos. Entre estes, polímeros reforçados com fibra
(FRP) têm sido cada vez mais empregados devido às suas propriedades benéficas.
No entanto, a natureza ortotrópica das colunas FRP, produzidas através de
pultrusão, apresenta um desafio, uma vez que as prescrições convencionais de
projeto para estruturas de aço não podem ser aplicadas diretamente. Assim, mais
pesquisas são essenciais para fornecer normas de projeto confiáveis para membros
estruturais em FRP. Entre as geometrias tradicionais de seção aberta, seções
cantoneira têm sido comumente empregadas. Apesar de sua simplicidade
geométrica, colunas com seção cantoneira apresentam uma flambagem estrutural e
um comportamento dinâmico complexos, que decorre do fato de tais colunas
apresentarem diferentes modos de deformação, função de suas propriedades
geométricas e materiais, incluindo interação modal, principalmente entre os modos
de flexão e torção. Este trabalho se concentra na investigação das características de
flambagem e vibração de colunas pultrudadas FRP com seção cantoneira,
abrangendo seções de abas iguais e desiguais, e abrangendo colunas curtas a longas.
Para isso, são desenvolvidos modelos de dimensão reduzida (ROMs) baseados na
teoria clássica não linear de placas (CPT) proposta por von Kármán. A seção
cantoneira é modelada como duas placas, com restrições de continuidade imposta
na ligação entre ambas. Utilizando o software GBTul, é conduzida uma
investigação abrangente da participação modal nos modos de flambagem e
vibração. Com base nesta análise, o campo de deslocamentos de cada placa para
todos os ROMs é aproximado por funções de interpolação derivadas analiticamente,
que são usadas para discretizar o sistema contínuo com base no método de Ritz.
Pela aplicação do princípio de Hamilton, os problemas de autovalor e equações não
lineares de movimento são derivados. São realizadas análises paramétricas
dimensionais e adimensionais, com cargas críticas e frequências de vibração
comparadas favoravelmente com os resultados do GBTul. Caminhos pós-flambagem são explorados resolvendo-se os sistemas de equações de equilíbrio não
lineares para cada ROM. A influência dos parâmetros geométricos e materiais na
rigidez pós-flambagem é investigada, juntamente com a sensibilidade às
imperfeições geométricas iniciais. Finalmente, a estabilidade de colunas sob
carregamento axial harmônico é avaliada resolvendo-se numericamente as
equações não lineares de movimento usando-se o método Runge-Kutta de quarta
ordem. As regiões de instabilidade paramétrica são determinadas em função da
frequência e magnitude da força de excitação harmônica, considerando a influência
do material, do amortecimento e da geometria da seção transversal. Os diagramas
de bifurcação são obtidos empregando-se o método da força bruta e técnicas de
continuação, esclarecendo as bifurcações associadas aos limites de instabilidade
paramétrica. A evolução das bacias de atração de soluções coexistentes é
investigada, proporcionando uma avaliação da integridade dinâmica. Os resultados
demonstram que a coluna pode perder estabilidade sob níveis de carga bem abaixo
da carga estática de flambagem e, portanto, os projetistas devem ter cautela ao
trabalhar com essas estruturas sujeitas a cargas axiais variáveis no tempo. / [en] Thin-walled elements with open cross sections have been widely employed
in engineering applications. While conventional applications and design codes
predominantly focus on steel members, a growing interest has emerged in exploring
alternative materials, particularly composites. Among these, fiber reinforced
polymer (FRP) has witnessed increased application owing to its advantageous
properties. However, the orthotropic nature of FRP columns, produced through
pultrusion, presents a challenge as conventional design prescriptions for structural
steel cannot be directly applied. Thus, further research is essential to derive reliable
design rules for FRP members. In the realm of traditional open section geometries,
angle sections have been commonly employed. Despite their geometric simplicity,
angles exhibit a complex structural buckling and dynamic behaviour which arises
from the fact that such columns may undergo different deformation modes,
according to their geometric and material properties, with modal interaction
observed, particularly between flexural and torsional modes. This work focuses on
investigating the buckling and vibration characteristics of pultruded FRP angle
sections, encompassing both equal and unequal-leg sections, and spanning short to
long columns. For this, reduced order models (ROMs) are developed based on the
classical von Kármán nonlinear plate theory (CPT). The angle section is modelled
as two plates, with continuity constraints considered at the common boundary.
Utilizing GBTul software, a comprehensive investigation of modal participation in
linear buckling and vibration modes is conducted. Based on this analysis, the plate
displacement field for each ROM is approximated by suitable analytically derived
interpolating functions, which are used to discretize the continuous system on the
basis of the Ritz energy method. By application of Hamilton s principle, the
eigenvalue problems and nonlinear equations of motion are derived. Parametric
dimensional and nondimensional analyses are carried out, with critical loads and
vibration frequencies compared favorably with GBTul results. Post-buckling paths
are explored by solving the systems of nonlinear equilibrium equations for each
ROM. The influence of geometric and material parameters on post-buckling
stiffness is investigated, along with the sensitivity to initial geometrical
imperfections. Finally, the stability of the columns under harmonic axial loading is
assessed by numerically solving the nonlinear equations of motion using the fourth-order Runge-Kutta method. Parametric instability regions are determined as a
function of the frequency and magnitude of the harmonic excitation force,
considering the influence of material, damping, and cross-sectional geometry.
Bifurcation diagrams are obtained employing the brute force method and
continuation techniques, clarifying the bifurcations associated to the parametric
instability boundaries. The evolution of basins of attraction of coexisting solutions
is investigated, providing an evaluation of dynamic integrity. The results
demonstrate that the column may lose stability at load levels well below the static
buckling loads and, therefore, designers must exercise caution when working with
these structures subjected to time-varying axial loads.
|
Page generated in 0.0301 seconds