1 |
[en] THE PROBLEM OF SQUARING THE CIRCLE IN THE HYPERBOLIC PLANE / [pt] O PROBLEMA DA QUADRATURA DO CÍRCULO NO PLANO HIPERBÓLICOJOHNNY FELIPE ALVES DE LIMA 22 February 2018 (has links)
[pt] A quadratura do círculo é um dos problemas de construtibilidade com régua e compasso legados pela antiguidade clássica e entreteve alguns matemáticos por séculos a fio até que os avanços da Álgebra Moderna demostraram a impossibilidade de tal construção no plano euclideano. Entrementes, desenvolviam-se as chamadas Geometrias Não-Euclideanas, baseadas na substituição do Postulado V de Euclides (axioma das paralelas). O intuito deste trabalho é mostrar como é possível, sob certas condições, produzir um quadrilátero regular e um círculo de mesma área no plano hiperbólico usando apenas régua e compasso (hiperbólicos). Um exemplo é apresentado em detalhe, e as condições necessárias e suficientes para o êxito da construção são apresentadas e discutidas brevemente. / [en] Squaring the circle is one of the straightedge and compass constructibility problems whose inception goes back to classical antiquity and that have entertained some mathematicians in the centuries that followed. The development of Modern Algebra has shown beyond doubt that such a construction is impossible in the Euclidean plane. Meanwhile, the so called non-Euclidean Geometries appeared that were based on the replacement of Euclid s fifth postulate (the parallel axiom). The goal of this work is to
show how it is possible — under certain constraints — to produce a regular quadrilateral and a circle of same area in the hyperbolic plane by means of (hyperbolic) straightedge and compass alone. An example is presented in full detail, and the necessary and sufficient conditions under which such
construction is possible are briefly discussed.
|
Page generated in 0.0457 seconds