• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

[pt] DETECÇÃO DE CONTEÚDO SENSÍVEL EM VIDEO COM APRENDIZADO PROFUNDO / [en] SENSITIVE CONTENT DETECTION IN VIDEO WITH DEEP LEARNING

PEDRO VINICIUS ALMEIDA DE FREITAS 09 June 2022 (has links)
[pt] Grandes quantidades de vídeo são carregadas em plataformas de hospedagem de vídeo a cada minuto. Esse volume de dados apresenta um desafio no controle do tipo de conteúdo enviado para esses serviços de hospedagem de vídeo, pois essas plataformas são responsáveis por qualquer mídia sensível enviada por seus usuários. Nesta dissertação, definimos conteúdo sensível como sexo, violencia fisica extrema, gore ou cenas potencialmente pertubadoras ao espectador. Apresentamos um conjunto de dados de vídeo sensível para classificação binária de vídeo (se há conteúdo sensível no vídeo ou não), contendo 127 mil vídeos anotados, cada um com seus embeddings visuais e de áudio extraídos. Também treinamos e avaliamos quatro modelos baseline para a tarefa de detecção de conteúdo sensível em vídeo. O modelo com melhor desempenho obteve 99 por cento de F2-Score ponderado no nosso subconjunto de testes e 88,83 por cento no conjunto de dados Pornography-2k. / [en] Massive amounts of video are uploaded on video-hosting platforms every minute. This volume of data presents a challenge in controlling the type of content uploaded to these video hosting services, for those platforms are responsible for any sensitive media uploaded by their users. There has been an abundance of research on methods for developing automatic detection of sensitive content. In this dissertation, we define sensitive content as sex, extreme physical violence, gore, or any scenes potentially disturbing to the viewer. We present a sensitive video dataset for binary video classification (whether there is sensitive content in the video or not), containing 127 thousand tagged videos, Each with their extracted audio and visual embeddings. We also trained and evaluated four baseline models for the sensitive content detection in video task. The best performing model achieved 99 percent weighed F2-Score on our test subset and 88.83 percent on the Pornography-2k dataset.

Page generated in 0.04 seconds