1 |
[en] BUS NETWORK ANALYSIS AND MONITORING / [pt] ANÁLISE E MONITORAMENTO DE REDES DE ÔNIBUSKATHRIN RODRIGUEZ LLANES 17 August 2017 (has links)
[pt] Ônibus, equipados com dispositivos GPS ativos que transmitem continuamente a sua posição, podem ser entendidos como sensores móveis de trânsito. De fato, as trajetórias dos ônibus fornecem uma fonte de dados útil para analisar o trânsito na rede de ônibus de uma cidade, dado que as autoridades de trânsito da cidade disponibilizem as trajetórias de forma aberta, oportuna e contínua. Neste contexto, esta tese propõe uma abordagem que usa os dados de GPS dos ônibus para analisar e monitorar a rede de ônibus de uma cidade. Ela combina algoritmos de grafos, técnicas de mineração de dados geoespaciais e métodos estatísticos. A principal contribuição desta tese é uma definição detalhada de operações e algoritmos para analisar e monitorar o tráfego na rede de ônibus, especificamente: (1) modelagem, análise e segmentaçãoda rede de ônibus; (2) mineração do conjunto de dados de trajetória de ônibus para descobrir padrões de tráfego; (3) detecção de anomalias de trânsito, classificação de acordo com sua gravidade, e avaliação do seu impacto; (4) manutenção e comparação de diferentes versões da rede de ônibus e dos seus padrões de tráfego para ajudar os planejadores urbanos a avaliar as mudanças. Uma segunda contribuição é a descrição de experimentos realizados para a rede de ônibus da Cidade do Rio de Janeiro, utilizando trajetórias de ônibus correspondentes ao período de junho de 2014 até fevereiro de 2017, disponibilizadas pela Prefeitura do Rio de Janeiro. Os resultados obtidos corroboram a utilidade da abordagem proposta para analisar e monitorar a rede de ônibus de uma cidade, o que pode ajudar os gestores do trânsito e as autoridades municipais a melhorar os planos de controle de trânsito e de mobilidade urbana. / [en] Buses, equipped with active GPS devices that continuously transmit their position, can be understood as mobile traffic sensors. Indeed, bus trajectories provide a useful data source for analyzing traffic in the bus network of a city, if the city traffic authority makes the bus trajectories available openly, timely and in a continuous way. In this context, this thesis proposes a bus GPS data-driven approach for analyzing and monitoring the bus network of a city. It combines graph algorithms, geospatial data mining techniques and statistical methods. The major contribution of this thesis is a detailed discussion of key operations and algorithms for modeling, analyzing and monitoring bus network traffic, specifically: (1) modelling, analyzing, and segmentation of the bus network; (2) mining the bus trajectory dataset to uncover traffic patterns; (3) detecting traffic anomalies, classifying them according to their severity, and estimating their impact; (4) maintaining and comparing different versions of the bus network and traffic patterns to help urban planners assess changes. Another contribution is the description of experiments conducted for the bus network of the City of Rio de Janeiro, using bus trajectories obtained from June 2014 to February 2017, which have been made available by the City Hall of Rio de Janeiro. The results obtained corroborate the usefulness of the proposed approach for analyzing and monitoring the bus network of a city, which may help traffic managers and city authorities improve traffic control and urban mobility plans.
|
2 |
[en] AN APPROACH BASED ON INTERACTIVE MACHINE LEARNING AND NATURAL INTERACTION TO SUPPORT PHYSICAL REHABILITATION / [pt] UMA ABORDAGEM BASEADA NO APRENDIZADO DE MÁQUINA INTERATIVO E INTERAÇÃO NATURAL PARA APOIO À REABILITAÇÃO FÍSICAJESSICA MARGARITA PALOMARES PECHO 10 August 2021 (has links)
[pt] A fisioterapia visa melhorar a funcionalidade física das pessoas, procurando
atenuar as incapacidades causadas por alguma lesão, distúrbio ou
doença. Nesse contexto, diversas tecnologias computacionais têm sido desenvolvidas
com o intuito de apoiar o processo de reabilitação, como as tecnologias
adaptáveis para o usuário final. Essas tecnologias possibilitam ao fisioterapeuta
adequar aplicações e criarem atividades com características personalizadas de
acordo com as preferências e necessidades de cada paciente. Nesta tese é proposta
uma abordagem de baixo custo baseada no aprendizado de máquina
interativo (iML - Interactive Machine Learning) que visa auxiliar os fisioterapeutas
a criarem atividades personalizadas para seus pacientes de forma fácil
e sem a necessidade de codificação de software, a partir de apenas alguns exemplos
em vídeo RGB (capturadas por uma câmera de vídeo digital) Para tal,
aproveitamos a estimativa de pose baseada em aprendizado profundo para rastrear,
em tempo real, as articulações-chave do corpo humano a partir de dados
da imagem. Esses dados são processados como séries temporais por meio do algoritmo
Dynamic Time Warping em conjunto com com o algoritmo K-Nearest
Neighbors para criar um modelo de aprendizado de máquina. Adicionalmente,
usamos um algoritmo de detecção de anomalias com o intuito de avaliar automaticamente
os movimentos. A arquitetura de nossa abordagem possui dois
módulos: um para o fisioterapeuta apresentar exemplos personalizados a partir
dos quais o sistema cria um modelo para reconhecer esses movimentos; outro
para o paciente executar os movimentos personalizados enquanto o sistema
avalia o paciente. Avaliamos a usabilidade de nosso sistema com fisioterapeutas
de cinco clínicas de reabilitação. Além disso, especialistas avaliaram clinicamente
nosso modelo de aprendizado de máquina. Os resultados indicam que
a nossa abordagem contribui para avaliar automaticamente os movimentos dos
pacientes sem monitoramento direto do fisioterapeuta, além de reduzir o tempo
necessário do especialista para treinar um sistema adaptável. / [en] Physiotherapy aims to improve the physical functionality of people, seeking
to mitigate the disabilities caused by any injury, disorder or disease. In
this context, several computational technologies have been developed in order
to support the rehabilitation process, such as the end-user adaptable technologies.
These technologies allow the physiotherapist to adapt applications and
create activities with personalized characteristics according to the preferences
and needs of each patient. This thesis proposes a low-cost approach based on
interactive machine learning (iML) that aims to help physiotherapists to create
personalized activities for their patients easily and without the need for
software coding, from just a few examples in RGB video (captured by a digital
video camera). To this end, we take advantage of pose estimation based on deep
learning to track, in real time, the key joints of the human body from image
data. This data is processed as time series using the Dynamic Time Warping
algorithm in conjunction with the K-Nearest Neighbors algorithm to create a
machine learning model. Additionally, we use an anomaly detection algorithm
in order to automatically assess movements. The architecture of our approach
has two modules: one for the physiotherapist to present personalized examples
from which the system creates a model to recognize these movements; another
to the patient performs personalized movements while the system evaluates
the patient. We assessed the usability of our system with physiotherapists
from five rehabilitation clinics. In addition, experts have clinically evaluated
our machine learning model. The results indicate that our approach contributes
to automatically assessing patients movements without direct monitoring by
the physiotherapist, in addition to reducing the specialist s time required to
train an adaptable system.
|
3 |
[en] ANOMALY DETECTION IN DATA CENTER MACHINE MONITORING METRICS / [pt] DETECÇÃO DE ANOMALIAS NAS MÉTRICAS DAS MONITORAÇÕES DE MÁQUINAS DE UM DATA CENTERRICARDO SOUZA DIAS 17 January 2020 (has links)
[pt] Um data center normalmente possui grande quantidade de máquinas com diferentes configurações de hardware. Múltiplas aplicações são executadas e software e hardware são constantemente atualizados. Para evitar a interrupção de aplicações críticas, que podem causar grandes prejuízos financeiros, os administradores de sistemas devem identificar e corrigir as falhas o mais cedo possível. No entanto, a identificação de falhas em data centers de produção muitas vezes ocorre apenas quando as aplicações e serviços já estão indisponíveis. Entre as diferentes causas da detecção tardia de falhas estão o uso técnicas de monitoração baseadas apenas em thresholds. O aumento crescente na complexidade de aplicações que são constantemente atualizadas torna difícil a configuração de thresholds ótimos para cada métrica e servidor. Este trabalho propõe o uso de técnicas de detecção de anomalias no lugar de técnicas baseadas em thresholds. Uma anomalia é um comportamento do sistema que é incomum e significativamente
diferente do comportamento normal anterior. Desenvolvemos um algoritmo para detecção de anomalias, chamado DASRS (Decreased Anomaly Score by Repeated Sequence) que analisa em tempo real as métricas coletadas de servidores de um data center de produção. O DASRS apresentou excelentes
resultados de acurácia, compatível com os algoritmos do estado da arte, além de tempo de processamento e consumo de memória menores. Por esse motivo, o DASRS atende aos requisitos de processamento em tempo real de um grande volume de dados. / [en] A data center typically has a large number of machines with different hardware configurations. Multiple applications are executed and software and hardware are constantly updated. To avoid disruption of critical applications, which can cause significant financial loss, system administrators should identify and correct failures as early as possible. However, fault-detection in production data centers often occurs only when applications and services are already unavailable. Among the different causes of late fault-detection are the use of thresholds-only monitoring techniques. The increasing complexity of constantly updating applications makes it difficult to set optimal thresholds for each metric and server. This paper proposes the use of anomaly detection techniques in place of thresholds based techniques. An anomaly is a system behavior that is unusual and significantly different from the previous normal behavior. We have developed an anomaly detection algorithm called Decreased Anomaly Score by Repeated Sequence (DASRS) that analyzes real-time metrics collected from servers in a production data center. DASRS has showed excellent accuracy results, compatible with state-of-the-art algorithms, and reduced processing time and memory
consumption. For this reason, DASRS meets the real-time processing requirements of a large volume of data.
|
Page generated in 0.0231 seconds