• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

[en] ALGORITHMS FOR MOTOR IMAGERY PATTERN RECOGNITION IN A BRAIN-MACHINE INTERFACE / [pt] ALGORITMOS PARA RECONHECIMENTO DE PADRÕES EM IMAGÉTICA MOTORA EM UMA INTERFACE CÉREBRO-MÁQUINA

GABRIEL CHAVES DE MELO 14 August 2018 (has links)
[pt] Uma interface cérebro-máquina (ICM) é um sistema que permite a um indivíduo, entre outras coisas, controlar um dispositivo robótico por meio de sinais oriundos da atividade cerebral. Entre os diversos métodos para registrar os sinais cerebrais, destaca-se a eletroencefalografia (EEG), principalmente por ter uma rápida resposta temporal e não oferecer riscos ao usuário, além de o equipamento ter um baixo custo relativo e ser portátil. Muitas situações podem fazer com que uma pessoa perca o controle motor sobre o corpo, mesmo preservando todas as funções do cérebro, como doenças degenerativas, lesões medulares, entre outras. Para essas pessoas, uma ICM pode representar a única possibilidade de interação consciente com o mundo externo. Todavia, muitas são as limitações que impossibilitam o uso das ICMs da forma desejada, entre as quais estão as dificuldades de se desenvolver algoritmos capazes de fornecer uma alta confiabilidade em relação ao reconhecimento de padrões dos sinais registrados com EEG. A escolha pelas melhores posições dos eletrodos e as melhores características a serem extraídas do sinal é bastante complexa, pois é altamente condicionada à variabilidade interpessoal dos sinais. Neste trabalho um método é proposto para escolher os melhores eletrodos e as melhores características para pessoas distintas e é testado com um banco de dados contendo registros de sete pessoas. Posteriormente dados são extraídos com um equipamento próprio e uma versão adaptada do método é aplicada visando uma atividade em tempo real. Os resultados mostraram que o método é eficaz para a maior parte das pessoas e a atividade em tempo real forneceu resultados promissores. Foi possível analisar diversos aspectos do algoritmo e da variabilidade inter e intrapessoal dos sinais e foi visto que é possível, mesmo com um equipamento limitado, obter bons resultados mediante análises recorrentes para uma mesma pessoa. / [en] A brain-machine interface (BMI) system allows a person to control robotic devices with brain signals. Among many existing methods for signal acquisition, electroencephalography is the most often used for BCI purposes. Its high temporal resolution, safety to use, portability and low cost are the main reasons for being the most used method. Many situations can affect a person s capability of controlling their body, although brain functions remain healthy. For those people in the extreme case, where there is no motor control, a BCI can be the only way to interact with the external world. Nevertheless, it is still necessary to overcome many obstacles for making the use of BCI systems to become practical, and the most important one is the difficulty to design reliable algorithms for pattern recognition using EEG signals. Inter-subject variability related to the EEG channels and features of the signal are the biggest challenges in the way of making BCI systems a useful technology for restoring function to disabled people. In this paper a method for selecting subject-specific channels and features is proposed and validated with data from seven subjects. Later in the work data is acquired with different EEG equipment and an adapted version of the proposed method is applied aiming online activities. Results showed that the method was efficient for most people and online activities had promising results. It was possible to analyze important aspects concerning the algorithm and inter and intrasubject variability of EEG signals. Also, results showed that it is possible to achieve good results when multiple analyses are performed with the same subject, even with EEG equipment with well known limitations concerning signal quality.
2

[en] MULTIPLE CLASSIFIER SYSTEM FOR MOTOR IMAGERY TASK CLASSIFICATION / [pt] SISTEMA DE MÚLTIPLOS CLASSIFICADORES PARA CLASSIFICAÇÃO DE TAREFAS DE IMAGINAÇÃO MOTORA

ALIMED CELECIA RAMOS 09 August 2017 (has links)
[pt] Interfaces Cérebro Computador (BCIs) são sistemas artificiais que permitem a interação entre a pessoa e seu ambiente empregando a tradução de sinais elétricos cerebrais como controle para qualquer dispositivo externo. Um Sistema de neuroreabilitação baseado em EEG pode combinar portabilidade e baixo custo com boa resolução temporal e nenhum risco para a vida do usuário. Este sistema pode estimular a plasticidade cerebral, desde que ofereça confiabilidade no reconhecimento das tarefas de imaginação motora realizadas pelo usuário. Portanto, o objetivo deste trabalho é o projeto de um sistema de aprendizado de máquinas que, baseado no sinal de EEG de somente dois eletrodos, C3 e C4, consiga classificar tarefas de imaginação motora com alta acurácia, robustez às variações do sinal entre experimentos e entre sujeitos, e tempo de processamento razoável. O sistema de aprendizado de máquina proposto é composto de quatro etapas principais: pré-processamento, extração de atributos, seleção de atributos, e classificação. O pré-processamento e extração de atributos são implementados mediante a extração de atributos estatísticos, de potência e de fase das sub-bandas de frequência obtidas utilizando a Wavelet Packet Decomposition. Já a seleção de atributos é efetuada por um Algoritmo Genético e o modelo de classificação é constituído por um Sistema de Múltiplos Classificadores, composto por diferentes classificadores, e combinados por uma rede neural Multi-Layer Perceptron. O sistema foi testado em seis sujeitos de bases de dados obtidas das Competições de BCIs e comparados com trabalhos benchmark da literatura, superando os resultados dos outros métodos. Adicionalmente, um sistema real de BCI para neurorehabilitação foi projetado, desenvolvido e testado, produzindo também bons resultados. / [en] Brain Computer Interfaces (BCIs) are artificial systems that allow the interaction between a person and their environment using the translated brain electrical signals to control any external device. An EEG neurorehabilitation system can combine portability and affordability with good temporal resolution and no health risks to the user. This system can stimulate the brain plasticity, provided that the system offers reliability on the recognition of the motor imagery (MI) tasks performed by the user. Therefore, the aim of this work is the design of a machine learning system that, based on the EEG signal from only C3 and C4 electrodes, can classify MI tasks with high accuracy, robustness to trial and inter-subject signal variations, and reasonable processing time. The proposed machine learning system has four main stages: preprocessing, feature extraction, feature selection, and classification. The preprocessing and feature extraction are implemented by the extraction of statistical, power and phase features of the frequency sub-bands obtained by the Wavelet Packet Decomposition. The feature selection process is effectuated by a Genetic Algorithm and the classifier model is constituted by a Multiple Classifier System composed by different classifiers and combined by a Multilayer Perceptron Neural Network as meta-classifier. The system is tested on six subjects from datasets offered by the BCIs Competitions and compared with benchmark works founded in the literature, outperforming the other methods. In addition, a real BCI system for neurorehabilitation is designed and tested, producing good results as well.

Page generated in 0.0425 seconds