• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

[en] TUNINGCHEF: AN APPROACH FOR CHOOSING THE BEST COST-BENEFIT DATABASE TUNING ACTIONS / [pt] TUNINGCHEF: UMA ABORDAGEM PARA ESCOLHER AS AÇÕES DE SINTONIA FINA DE BANCO DE DADOS COM MELHOR CUSTO-BENEFÍCIO

VICTOR AUGUSTO LIMA LINS DE SOUZA 29 November 2022 (has links)
[pt] Enquanto muitos trabalhos de pesquisa propõem uma forma de listar um conjunto de opções de sintonia fina para uma determinada carga de trabalho, poucos oferecem uma maneira de ajudar o DBA a tomar melhores decisões ao encontrar um conjunto de ações disponíveis. TuningChef é o resultado do desenvolvimento de uma proposta do passo a passo desse processo de decisão. Dado um conjunto de opções de sintonia fina, recomendamos um subconjunto com boa proporção de custo-benefício, com contexto suficiente para que o DBA entenda a motivação por trás de cada decisão, incluindo a possibilidade de deixar o usuário construir seu próprio subconjunto e verificar o impacto esperado. Também são apresentados resultados experimentais que demonstram a importância do processo de decisão, onde dentro de um subconjunto de 50+ ações de sintonia fina sugeridas por uma ferramenta externa, apenas 8 mostram-se como benéficas para a carga de trabalho utilizada. / [en] While many research works propose a way to list a set of fine-tuning options for a given workload, only a few offer a way to help the DBA make better decisions when encountering a set of available options, especially when taking his possibilities into consideration. We propose and develop a step-by-step decision process. Given a set of fine-tuning options, we recommend a subset with good cost-benefit proportion. Enough context for the DBA accompanies the recommendation to understand its reasoning, with the possibility of letting the user build his own subset and check the expected impact. Some experimental results are also described, showing the importance of the decision step when fine tuning a database, where in a set on 50+ fine tuning actions suggested by an external tool, only 8 are considered beneficial for the a specific workload.

Page generated in 0.0285 seconds