• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

[pt] SEGMENTAÇÃO DE FALHAS SÍSMICAS USANDO ADAPTAÇÃO DE DOMÍNIO NÃO SUPERVISIONADA / [en] SEISMIC FAULT SEGMENTATION USING UNSUPERVISED DOMAIN ADAPTATION

MAYKOL JIAMPIERS CAMPOS TRINIDAD 28 November 2023 (has links)
[pt] A segmentação de falhas sísmicas apresenta uma tarefa desafiadora edemorada na geofísica, especialmente na exploração e extração de petróleo egás natural. Métodos de Aprendizado Profundo (Deep Learning) têm mostradoum grande potencial para enfrentar esses desafios e oferecem vantagens emcomparação com métodos tradicionais. No entanto, abordagens baseadas emAprendizado Profundo geralmente requerem uma quantidade substancial dedados rotulados, o que contradiz o cenário atual de disponibilidade limitadade dados sísmicos rotulados. Para lidar com essa limitação, pesquisadores têmexplorado a geração de dados sintéticos como uma solução potencial paradados reais não rotulados. Essa abordagem envolve treinar um modelo emdados sintéticos rotulados e, posteriormente, aplicar diretamente ao conjuntode dados real. No entanto, a geração de dados sintéticos encontra o problemade deslocamento de domínio devido à complexidade das situações geológicasdo mundo real, resultando em diferenças na distribuição entre conjuntosde dados sintéticos e reais. Para mitigar o problema de deslocamento dedomínio na detecção de falhas sísmicas, propomos uma nova abordagem queutiliza técnicas de Adaptação de Domínio Não Supervisionada ou UnsupervisedDomain Adaptation (UDA). Nossa proposta envolve o uso de um conjunto dedados sintéticos para treinamento do modelo e sua adaptação a dois conjuntosde dados reais disponíveis publicamente na literatura. As técnicas de UDAescolhidas incluem Maximum Mean Discrepancy (MMD), Domain-AdversarialNeural Networks (DANN) e Fourier Domain Adaptation (FDA). MMD eDANN visam alinhar características em um espaço de características comumde n dimensões, minimizando discrepâncias e aumentando a confusão dedomínio por meio do treinamento adversarial, respectivamente. Por outro lado,FDA transfere o estilo de amostras reais para sintéticas usando TransformadaRápida de Fourier. Para os experimentos, utilizamos uma versão menor doUNet e sua variante Atrous UNet, que incorpora camadas convolucionaisdilatadas em seu gargalo. Além disso, o DexiNed (Dense Extreme InceptionNetwork), um modelo do estado da arte para detecção de bordas, foi empregadopara fornecer uma análise mais abrangente. Além disso, estudamos a aplicaçãode ajuste fino ou fine-tuning em conjuntos de dados rotulados para investigarseu impacto no desempenho, pois muitos estudos o têm utilizado para reduziro deslocamento de domínio.Os resultados finais demonstraram melhorias significativas no desempenho de detecção de falhas ao aplicar técnicas de UDA, com aumento médio deaté 13 por cento em métricas de avaliação como Intersection over Union e F1-score.Além disso, a abordagem proposta obteve detecções mais consistentes de falhassísmicas com menos falsos positivos, indicando seu potencial para aplicações nomundo real. Por outro lado, a aplicação de ajuste fino não demonstrou ganhossignificativos no desempenho, mas reduziu o tempo de treinamento. / [en] Seismic fault segmentation presents a challenging and time-consuming task in geophysics, particularly in the exploration and extraction of oil and natural gas. Deep Learning (DL) methods have shown significant potential to address these challenges and offer advantages compared to traditional methods. However, DL-based approaches typically require a substantial amount of labeled data, which contradicts the current scenario of limited availability of labeled seismic data. To address this limitation, researchers have explored synthetic data generation as a potential solution for unlabeled real data. This approach involves training a model on labeled synthetic data and subsequently applying it directly to the real dataset. However, synthetic data generation encounters the domain shift problem due to the complexity of real-world geological situations, resulting in differences in distribution between synthetic and real datasets. To mitigate the domain shift issue in seismic fault detection, we propose a novel approach utilizing Unsupervised Domain Adaptation (UDA) techniques. Our proposal involves using a synthetic dataset for model training and adapting it to two publicly available real datasets found in the literature. The chosen UDA techniques include Maximum Mean Discrepancy (MMD), Domain-Adversarial Neural Networks (DANN), and Fourier Domain Adaptation (FDA). MMD and DANN aim to align features in a common n-dimensional feature space by minimizing discrepancy and increasing domain confusion through adversarial training, respectively. On the other hand, FDA transfers the style from real to synthetic samples using Fast Fourier Transform. For the experiments, we utilized a smaller version of UNet and its variant Atrous UNet, which incorporates Dilated Convolutional layers in its bottleneck. Furthermore, DexiNed (Dense Extreme Inception Network), a state-of-the-art model for edge detection, was employed to provide a more comprehensive analysis. Additionally, we studied the application of fine-tuning on labeled datasets to investigate its impact on performance, as many studies have employed it to reduce domain shift. The final results demonstrated significant improvements in fault detection performance by applying UDA techniques, with up to a 13 percent increase in evaluation metrics such as Intersection over Union and F1-score on average. Moreover, the proposed approach achieved more consistent detections of seismic faults with fewer false positives, indicating its potential for realworld applications. Conversely, the application of fine-tuning did not show a significant gain in performance but did reduce the training time.
2

[en] GENERALIZATION OF THE DEEP LEARNING MODEL FOR NATURAL GAS INDICATION IN 2D SEISMIC IMAGE BASED ON THE TRAINING DATASET AND THE OPERATIONAL HYPER PARAMETERS RECOMMENDATION / [pt] GENERALIZAÇÃO DO MODELO DE APRENDIZADO PROFUNDO PARA INDICAÇÃO DE GÁS NATURAL EM DADOS SÍSMICOS 2D COM BASE NO CONJUNTO DE DADOS DE TREINAMENTO E RECOMENDAÇÃO DE HIPERPARÂMETROS OPERACIONAIS

LUIS FERNANDO MARIN SEPULVEDA 21 March 2024 (has links)
[pt] A interpretação de imagens sísmicas é uma tarefa essencial em diversas áreas das geociências, sendo um método amplamente utilizado na exploração de hidrocarbonetos. Porém, sua interpretação exige um investimento significativo de recursos, e nem sempre é possível obter um resultado satisfatório. A literatura mostra um número crescente de métodos de Deep Learning, DL, para detecção de horizontes, falhas e potenciais reservatórios de hidrocarbonetos, porém, os modelos para detecção de reservatórios de gás apresentam dificuldades de desempenho de generalização, ou seja, o desempenho fica comprometido quando utilizados em imagens sísmicas de novas explorações campanhas. Este problema é especialmente verdadeiro para levantamentos terrestres 2D, onde o processo de aquisição varia e as imagens apresentam muito ruído. Este trabalho apresenta três métodos para melhorar o desempenho de generalização de modelos DL de indicação de gás natural em imagens sísmicas 2D, para esta tarefa são utilizadas abordagens provenientes de Machine Learning, ML e DL. A pesquisa concentra-se na análise de dados para reconhecer padrões nas imagens sísmicas para permitir a seleção de conjuntos de treinamento para o modelo de inferência de gás com base em padrões nas imagens alvo. Esta abordagem permite uma melhor generalização do desempenho sem alterar a arquitetura do modelo DL de inferência de gás ou transformar os traços sísmicos originais. Os experimentos foram realizados utilizando o banco de dados de diferentes campos de exploração localizados na bacia do Parnaíba, no Nordeste do Brasil. Os resultados mostram um aumento de até 39 por cento na indicação correta do gás natural de acordo com a métrica de recall. Esta melhoria varia em cada campo e depende do método proposto utilizado e da existência de padrões representativos dentro do conjunto de treinamento de imagens sísmicas. Estes resultados concluem com uma melhoria no desempenho de generalização do modelo de inferência de gases DL que varia até 21 por cento de acordo com a pontuação F1 e até 15 por cento de acordo com a métrica IoU. Estes resultados demonstram que é possível encontrar padrões dentro das imagens sísmicas usando uma abordagem não supervisionada, e estas podem ser usadas para recomendar o conjunto de treinamento DL de acordo com o padrão na imagem sísmica alvo; Além disso, demonstra que o conjunto de treinamento afeta diretamente o desempenho de generalização do modelo DL para imagens sísmicas. / [en] Interpreting seismic images is an essential task in diverse fields of geosciences, and it s a widely used method in hydrocarbon exploration. However, its interpretation requires a significant investment of resources, and obtaining a satisfactory result is not always possible. The literature shows an increasing number of Deep Learning, DL, methods to detect horizons, faults, and potential hydrocarbon reservoirs, nevertheless, the models to detect gas reservoirs present generalization performance difficulties, i.e., performance is compromised when used in seismic images from new exploration campaigns. This problem is especially true for 2D land surveys where the acquisition process varies, and the images are very noisy. This work presents three methods to improve the generalization performance of DL models of natural gas indication in 2D seismic images, for this task, approaches that come from Machine Learning, ML, and DL are used. The research focuses on data analysis to recognize patterns within the seismic images to enable the selection of training sets for the gas inference model based on patterns in the target images. This approach allows a better generalization of performance without altering the architecture of the gas inference DL model or transforming the original seismic traces. The experiments were carried out using the database of different exploitation fields located in the Parnaíba basin, in northeastern Brazil. The results show an increase of up to 39 percent in the correct indication of natural gas according to the recall metric. This improvement varies in each field and depends on the proposed method used and the existence of representative patterns within the training set of seismic images. These results conclude with an improvement in the generalization performance of the DL gas inference model that varies up to 21 percent according to the F1 score and up to 15 percent according to the IoU metric. These results demonstrate that it is possible to find patterns within the seismic images using an unsupervised approach, and these can be used to recommend the DL training set according to the pattern in the target seismic image; Furthermore, it demonstrates that the training set directly affects the generalization performance of the DL model for seismic images.

Page generated in 0.027 seconds