• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

[en] NUMERICAL AND EXPERIMENTAL ANALYSIS OF MELTING SUBSTANCES PROCESS HAVING A MAXIMUM DENSITY / [pt] ANÁLISE NUMÉRICO-EXPERIMENTAL DO PROCESSO DE FUSÃO DE SUBSTÂNCIAS APRESENTANDO UM MÁXIMO DE DENSIDADE

GISELE RIBEIRO VIEIRA 01 March 2018 (has links)
[pt] Este trabalho apresenta uma análise do processo de fusão de uma substância pura em uma cavidade retangular; a qual tem uma das paredes verticais aquecida. A fase sólida do material em mudança de fase é mantida isotérmica à temperatura de fusão. Consequentemente, todo o processo é controlado pela convecção natural térmica na fase líquida. Os gradientes de densidade são devidos unicamente ao campo de temperaturas. O escoamento é laminar e a análise é feita de forma bidimensional. O fluido de trabalho é newtoniano. Supõe-se que a hipótese de Boussinesq é válida, ou seja, considera-se que o fluido possui densidade constante, com exceção do termo de força de empuxo da equação de momentum. São propostas algumas aproximações para descrever o comportamento da densidade em função da temperatura neste termo. As aproximações propostas dependem da substância de trabalho e da gama de temperaturas considerada. Materiais com diferentes números de Prandtl, sujeitos à fusão são analisados numericamente. A simulação numérica utiliza o Método dos Volumes Finitos e é baseada em uma hipótese que considera o processo de fusão como uma sucessão de estados quase-estacionários. Assim, a partir de uma dada posição da frente de fusão, resolve-se as equações de convecção natural em uma cavidade fixa. O formato irregular da interface sólido-líquido é levado em conta através de uma transformação de coordenadas não-ortogonais. De posse da solução da transferência de calor na interface, pode-se determinar a posição da frente de fusão no final do passo de tempo considerado. Em seguida, retorna-se o cálculo do escoamento convectivo para a nova cavidade líquida. O processo é repetido até que o processo de fusão chegue próximo ao fim. O caso da água, que passa por um máximo de densidade próximo à temperatura de 4 graus Celsius, recebe atenção especial. O comportamento anômalo da densidade desta substância pode exercer forte influência sobre a transferência de calor durante o processo de fusão do gelo. O interesse particular no caso da água se deve ao fato do máximo de densidade ocorrer em um domínio de temperaturas frequentemente encontrado na natureza e em diversas aplicações tecnológicas. A carência de trabalhos neste campo motivou a realização de uma parte experimental. Os experimentos realizados permitem medidas de temperatura e observações fotográficas do escoamento e do avanço da frente de fusão. Os resultados mostram que a variação não-linear da densidade do termo de força de empuxo afeta a transferência de calor por convecção natural, o movimento da interface e a estrutura do escoamento. / [en] This work presents an analysis of the melting process of a pure substance enclosed in a rectangular cavity heated from one of the verticals walls. The solid phase of the phase-change material is maintained isothermal at the fusion temperature. Consequently, the process is controlled by thermal natural convection in the liquid phase. The density gradients result from the temperature field only. The flow is laminar and the analysis is two-dimensional. The fluid is Newtonian. The Boussinesq hypothesis is assumed, that is the fluid density is considered to be constant, except in the driving term of the momentum equation. Various approximations are proposed for this term to describe the density behavior with the temperature. The proposed approximations depend on the substance and on the temperature range. Materials submitted to the melting phenomena with different Prandtl numbers are numerically investigated using a Finite Volume Method. The numerical simulation is based on the hypothesis of the quasi-stationary processes. So, from a certain position of the melting front, the natural convection equations in a fixed cavity are solved. The shape of the solid-liquid interface creates some difficulties. An algebraic method of transformation of non-orthogonal coordinates is used to map the irregular physical space occupied by the liquid into a rectangular computational space. The resulting local heat transfer at the interface is then used to determine the position of the melting front at the end of the time step. Next, the convective flow at the new liquid cavity is calculated. The procedure is repeated until the substance is almost completely melted. Special attention is given to the case of water, where a maximum density is attained at a temperature close to 4 degrees Celsius. The anomalous behavior of the water density can strongly influence the heat transfer during the melting process of ice. The lack of works in this field have motivated an experimental investigation. The particular interest of ice melting is based on the fact that the maximum density occurs over a wide range of temperature frequently found in nature and many technological applications. The experiments performed allow temperature measurements and photographic observations of the flow and the melting front motion. The results show that the non-linear density variation in the buoyancy term affects the heat transfer by natural convection, the interface motion and the flow structure.

Page generated in 0.0387 seconds