• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

[pt] MODELAGEM ESTATÍSTICA ESPARSA COM APLICAÇÕES EM ENERGIA RENOVÁVEL E PROCESSAMENTO DE SINAIS / [en] SPARSE STATISTICAL MODELLING WITH APPLICATIONS TO RENEWABLE ENERGY AND SIGNAL PROCESSING

MARIO HENRIQUE ALVES SOUTO NETO 28 July 2015 (has links)
[pt] Motivado pelos desafios de processar a grande quantidade de dados disponíveis, pesquisas recentes em estatística tem sugerido novas técnicas de modelagem e inferência. Paralelamente, outros campos como processamento de sinais e otimização também estão produzindo métodos para lidar problemas em larga escala. Em particular, este trabalho é focado nas teorias e métodos baseados na regularização l1. Após uma revisão compreensiva da norma l1 como uma ferramenta para definir soluções esparsas, estudaremos mais a fundo o método LASSO. Para exemplificar como o LASSO possui uma ampla gama de aplicações, exibimos um estudo de caso em processamento de sinal esparso. Baseado nesta idea, apresentamos o l1 level-slope filter. Resultados experimentais são apresentados para uma aplicação em transmissão de dados via fibra óptica. Para a parte final da dissertação, um novo método de estimação é proposto para modelos em alta dimensão com variância periódica. A principal ideia desta nova metodologia é combinar esparsidade, induzida pela regularização l1, com o método de máxima verossimilhança. Adicionalmente, esta metodologia é utilizada para estimar os parâmetros de um modelo mensal estocástico de geração de energia eólica e hídrica. Simulações e resultados de previsão são apresentados para um estudo real envolvendo cinquenta geradores de energia renovável do sistema Brasileiro. / [en] Motivated by the challenges of processing the vast amount of available data, recent research on the ourishing field of high-dimensional statistics is bringing new techniques for modeling and drawing inferences over large amounts of data. Simultaneously, other fields like signal processing and optimization are also producing new methods to deal with large scale problems. More particularly, this work is focused on the theories and methods based on l1-regularization. After a comprehensive review of the l1-norm as tool for finding sparse solutions, we study more deeply the LASSO shrinkage method. In order to show how the LASSO can be used for a wide range of applications, we exhibit a case study on sparse signal processing. Based on this idea, we present the l1 level-slope filter. Experimental results are given for an application on the field of fiber optics communication. For the final part of the thesis, a new estimation method is proposed for high-dimensional models with periodic variance. The main idea of this novel methodology is to combine sparsity, induced by the l1-regularization, with the maximum likelihood criteria. Additionally, this novel methodology is used for building a monthly stochastic model for wind and hydro inow. Simulations and forecasting results for a real case study involving fifty Brazilian renewable power plants are presented.

Page generated in 0.0368 seconds