1 |
[en] 1D SEISMIC INVERSION USING SIMULATED ANNEALING / [pt] A INVERSÃO SÍSMICA 1D USANDO O SIMULATED ANNEALINGJORGE MAGALHAES DE MENDONCA 25 November 2005 (has links)
[pt] O problema de Inversão Sísmica envolve a determinação
das
propriedades físicas da superfície a partir de dados
amostrados na superfície. A construção de um modelo
matemático da resposta da subsuperfície à excitação de
uma
fonte sísmica, tendo como parâmetros as propriedades
físicas da subsuperfície, fornece um modelo sintético
desta resposta para determinados valores dos parâmetros.
Isto permite comparar dados amostrados e modelos
sintético. A perturbação do modelo pela variação dos
seus
parâmetros pode aproximar dados amostrados e sintéticos
e
colocar o problema da Inversão como um problema de
minimização de uma função de erro que os ajuste de forma
adequada. Usualmente, os métodos que tentam minimizar a
medida a medida de erro supõem um comportamento linear
entre a perturbação do modelo e esta medida. Na maioria
dos problemas geofísicos, esta medida apresenta um alto
grau de não linearidade e uma grande quantidade de
mínimos
locais. Isto torna estes métodos baseados em
aproximações
lineares muito sensíveis à escolha de uma boa solução
inicial, o que nem sempre está disponível.
Como resolver este problema sem uma boa solução
inicial? A teoria da Inferência Bayesiana oferece uma
solução pelo uso de informação a priori sob o espaço dos
parâmetros. O problema de Inversão volta então a ser um
problema de otimização onde se precisa maximizar a
probabilidade a posteriori dos parâmetros assumirem um
certo valor dado que se obteve o resultado da amostragem
dos dados. Este problema é resolvido pelo método do
Simulated Annealing (SA), método de otimização global
que
faz uma busca aleatória direcionada no espaço de
solução.
Este método foi proposto por uma analogia entre o
recozimento física de sólidos e problemas de otimização.
O SA, na sua variante Very Fast Simulated
Annealing (VFSA), é aplicado na solução de problemas de
Inversão Sísmica 1 D para modelos acústico e elásticos
gerados sinteticamente. A avaliação do desempenho do SA
usando medidas de erro com diferentes normas é realizada
para um modelo elástico adicionado de ruído aleatório. / [en] The seismic inverse problem involves determining the
subsurface physical properties from data sampled at
Earth`s surface. A mathematical model of the response of
the subsurface excited by a seismic source, having
physical properties as parameters, provides a synthetic
model for this response. This makes possible to compare
sampled and synthetic data. The perturbation in the model
due to the variation of its parameters can approximate
these data and states the inversion problem as the
minimization of an error function that fits them
adequately. Usually, the methods which attempt to minimize
this error assume that a perturbation in the model is
linearly relates with a perturbation in the measured
response. Most geophysical inverse problems are highly
nonlinear and are rife with local minima. Therefore these
methods are very sensitive to the choice of the initial
model and good starting solutions may not be available.
What should be done, if there is no basis for an
initial guess? The theory of Bayesian inference provides
an answer to this question taking into account the prior
information about the parameter space. The inverse problem
can then be stated as an optimization problem whose goal
is to maximize the posterior probability that the set of
parameters has a certain value once given the result of
the sample. This problem is solved by the Simulated
Annealing method, a global optimization method that
executes a oriented random search in the solution space.
This method comes from an analogy between the physical
annealing of solids and optimization problems.
The Very Fast Simulated Annealing (VFSA), a
variant of SA, is applied to the solution of 1 D seismic
inverse problems generated synthetically by acoustic and
alastic done by a elastic model with additive noise.
|
2 |
[en] SANDSTONE SEISMIC MODELING: EFFECTS OF VELOCITY DISPERSION AND FLUID TYPE / [pt] MODELAGEM SÍSMICA EM ARENITOS: EFEITO DA DISPERSÃO DA VELOCIDADE E DO TIPO DE FLUIDOOLGA CECILIA CARVAJAL GARCIA 11 July 2008 (has links)
[pt] O conhecimento do que acontece no reservatório em produção a partir de variações temporais dos atributos sísmicos devido aos processos dinâmicos vem atingindo um valor crescente na indústria do petróleo, especialmente em arenitos. Este processo possui vários desafios, focados em grande parte a desvendar a superposição dos diferentes efeitos provocados pelas mudanças do reservatório nos dados sísmicos. As propriedades sísmicas são afetadas de maneira complexa por vários fatores, sendo a saturação um dos mais importantes, principalmente em rochas porosas como o arenito. Esta propriedade influencia no módulo elástico da rocha e sua resposta sísmica e, ao mesmo tempo, introduz dispersão da velocidade (variação da velocidade com a freqüência). A transição de fluido efetivo (distribuição homogênea e menores velocidades) para fluido com distribuição heterogênea (e maiores velocidades) estabelece um mecanismo de dispersão presente para freqüências sísmicas in situ, especialmente no arenito. O método mais utilizado para aplicar a técnica de substituição de fluidos se baseia na teoria de Gassmann (1951), que considera o meio poroso estático (estado de isostress), onde o fluido não é afetado
pela perturbação da onda. No entanto, pesquisas mostram que as velocidades acústicas em rochas saturadas de fluido dependem da freqüência, do tipo de fluido e sua distribuição no meio poroso, viscosidade e outras propriedades que tornam as ondas dispersivas. Neste trabalho são realizadas simulações de fluxo de reservatórios, transformações de física de rochas, upscaling e modelagem sísmica em cenários de injeção de gás com o objetivo de esclarecer a importância de levar em conta a dispersão da velocidade na análise time-lapse. Para isso, são analisados para cada modelo mapas de saturação, velocidade, impedância e sismogramas sintéticos (seções de contraste) calculados com as teorias de substituição Gassmann (1951) e Mavko E Jizba (1991). Os resultados mostram que a resposta
sísmica pode ter um incremento de até 15 por cento quando a dispersão devida ao fluxo local é considerada. Porosidade e tortuosidade são parâmetros essenciais que influenciam de maneira diferente na resposta sísmica. / [en] The evaluation of reservoir dynamics during production
through time-lapse
interpretation has reached a substantial importance in the
petroleum industry,
mainly in sandstones. This evaluation presents many
challenges, mainly
concerned to unmask the overlapping of different effects in
seismic data due to
reservoir changes. Several factors affect seismic
properties and saturation is one
of the most important. This property influences the rock
bulk modulus and
seismic response and also causes a velocity dependence on
the frequency. This
phenomenon is known as velocity dispersion. Furthermore,
the transition from
effective homogeneous fluid to heterogeneous saturation
represents a dispersion
mechanism that appears for seismic frequencies in situ in
sandstones. The most
commonly method used to perform the fluid substitution
technique is based in
Gassmann theory (1951). This approach considers a static
porous media (isostress
condition), where fluid is not affected by wave
propagation. However, it is well
known that acoustic velocities in fluid saturated rocks
depends on frequency,
according to fluid type and distribution on porous media,
viscosity, and others
properties that become waves dispersive. In this work
reservoir flow-simulation,
rock physics transformations, upscaling and seismic
modeling were performed in
gas injection scenarios. Synthetic seismograms and some
contrast sections were
generated using Gassmann (1951) and Mavko & Jizba (1991)
substitution
theories. The goal is to clarify the relevance of
considering velocity dispersion on
time-lapse seismic analyzing possible differences in the
seismic parameters.
Results show that seismic response could increase in 15%
when squirt flow
dispersion is considered. Porosity and tortuosity are
essential parameters to
analyze seismic response.
|
3 |
[en] ACOUSTIC MODELING IN THE WAVELET TRANSFORM DOMAIN / [pt] MODELAGEM ACÚSTICA NO DOMÍNIO DA TRANSFORMADA WAVELETFELIPE PRADO LOUREIRO 26 May 2004 (has links)
[pt] O processamento de sinais sísmicos é peça chave na
exploração
petrolífera. O caminho entre aquisição de dados e
interpretação sísmica é composto por uma trilha de
processos interdependentes, entre eles os processos de
modelagem e migração. A dissertação apresenta a
composição
de um algoritmo de modelagem acústica 2D no domínio da
transformada wavelet a partir de ferramentas próprias e
outras já existentes na literatura. São estabelecidas as
aproximações necessárias à solução em meios heterogêneos
e à
independência entre os subdomínios de processamento. Esta
independência possibilita a exploração de técnicas de
processamento paralelo. Através de exemplos, seu
desempenho
é avaliado com comparações à solução via diferenças
finitas. Estas soluções são ainda submetidas ao mesmo
processo de migração baseado em um terceiro modo de
solução. / [en] Seismic signal processing is a key step to oil exploration.
The path between data acquisition and seismic
interpretation is composed by a sequence of interdependent
processes, among which are modeling and migration
processes. A 2D acoustic modeling algorithm in wavelet
Transform domain, based on custom tools and tools already
made known in literature is presented. Approximations
necessary for the solution in inhomogeneous media and for
complete independence between processing subspaces are
established. Such independence allows exploration of
parallel processing techniques. Throughout examples,
performance is evaluated in comparison to finite-difference
solution. These solutions are further processed by a
migration technique based in yet another solution method.
|
4 |
[en] IMPACT ON SEISMIC IMAGING OF GEOLOGICAL FAULTS IN CARBONATE ROCKS / [pt] IMPACTO NO IMAGEAMENTO SÍSMICO DE FALHAS GEOLÓGICAS EM ROCHAS CARBONÁTICASMARIO PAES DE ALMEIDA JUNIOR 25 September 2023 (has links)
[pt] As falhas geológicas são estruturas tipicamente interpretadas em duas
dimensões, como superfícies, nos dados sísmicos e da mesma maneira são representadas em modelos geológicos de reservatórios de petróleo. Entretanto, as
falhas são zonas tridimensionalmente complexas que representam regiões de
fraquezas que concentram fraturas e rochas altamente e heterogeneamente deformadas. Portanto, a representação adequada destas zonas é importante para
o gerenciamento e avaliação econômica de um campo de petróleo, com impacto
nas áreas de perfuração, completação e locação de poços, estratégias para aumento de fator de recuperação e até na estimativa da reserva recuperável.
Devido a grande importância dos reservatórios carbonáticos fraturados, mais
de 60 por cento das reservas provadas de óleo e 40 por cento das reservas de gás no mundo [1]
estão presentes nesses reservatórios, o trabalho proposto tem como objetivo
a modelagem geológica estrutural de uma falha em rochas carbonáticas do
reservatório de Gawar da Arábia Saudita a partir de parâmetros de deformabilidade obtidos por Ameen et al. [2]. O trabalho também aborda os impactos
da resolução espacial dos dados sísmicos na intepretação destas estruturas,
através da simulação da imagem sísmica da falha. Os resultados mostram que
o método de elemento discreto é uma ferramenta adequada para modelagem
realística de falhas geológicas, entretanto, alguns modelos obtiveram resultados não realísticos devido à dificuldade da manutenção da tensão confinante
durante a produção da falha. Os estudos mostraram que apesar da interpretação volumétrica destas estruturas através das metodologias de interpretação
baseadas em atributos sísmicos serem possíveis, existe uma considerável limitação devido a resolução espacial e na dificuldade dos algoritmos em formar
a imagem sísmica da zona de falha, onde há contraste lateral de propriedades
acústicas. / [en] Faults are structures typically interpreted in two dimensions, such assurfaces, in seismic data and are similarly represented in geological models of oil reservoirs. However, faults are three-dimensionally complex zones that represent regions of weakness that concentrate fractures and highly heterogeneously deformed rocks. Therefore, the adequate representation of these zonesis important for the management and economic evaluation of an oil field, withan impact on the areas of drilling, completion and location of wells, strategies for increasing the recovery factor and even on estimating the recoverable reserve. Due to the great importance of fractured carbonate reservoirs, more than 60 percent of the proven oil reserves and 40 percent of the gas reserves in the world[1] are present in these reservoirs, the proposed work aims at the geomechanical modeling of a geological fault in carbonate rocks of Saudi Arabia s Gawar reservoir from deformability parameters obtained by Ameen et al. [2]. The work also addresses the impacts of the spatial resolution of seismic data on the interpretation of these structures, through the simulation of the fault seismic image. The results show that the discrete element method is an adequate tool for realistic modeling of geological faults, however, some models obtained unrealistic results due to the difficulty of maintaining the confining stress during fault production. The studies showed that although the volumetric interpretation of these structures through interpretation methodologies based on seismic attributes are possible, there is a considerable limitation due to the spatial resolution and the inadequacy of the seismic data to adequately deal with the lateral contrast of acoustic properties present in areas close to the damage zones.
|
5 |
[en] 4D SEISMIC, GEOMECHANICS AND RESERVOIR SIMULATION INTEGRATED STUDY APPLIED TO SAGD THERMAL RECOVERY / [pt] ESTUDO INTEGRADO DE SÍSMICA 4D, GEOMECÂNICA E SIMULAÇÃO DE RESERVATÓRIOS APLICADO A PROCESSOS DE RECUPERAÇÃO TÉRMICA SAGDPAUL RICHARD RAMIREZ PERDOMO 26 October 2017 (has links)
[pt] As reservas de óleos pesados têm obtido grande importância devido à diminuição das reservas de óleos leves e ao aumento dos preços do petróleo. Porém, precisa-se de aumentar a viscosidades destes óleos pesados para que possam fluir até superfície. Para reduzir a viscosidade foi escolhida a técnica de recuperação térmica SAGD (Steam Assisted Gravity Drainage) pelos seus altos valores de recobro. A redução da viscosidade é atingida pela transmissão de calor ao óleo pela injeção de vapor, porém uma parte deste calor é transmitida à rocha. Esta transmissão de calor junto com a produção de óleo geram uma variação no estado de tensões no reservatório o que por sua vez geram fenômenos geomecânicos. Os simuladores convencionais avaliam de uma forma muito simplificada estes fenômenos geomecânicos, o que faz necessários uma abordagem mais apropriada que acople o escoamento dos hidrocarbonetos e a transmissão de calor com a deformação da rocha. As mudanças no reservatório, especialmente a variação da saturação, afetam as propriedades sísmicas da rocha, as quais podem ser monitoradas para acompanhar o avanço da frente de vapor. A simulação fluxo-térmica-composicional-geomecânica é integrada à sísmica de monitoramento 4D da injeção de vapor (a través da física de rochas). Existe uma grande base de dados, integrada por propriedades dos fluidos do reservatório (PVT) (usado no arquivo de entrada de simulação de fluxo) e uma campanha de mecânica das rochas. Foram simulados vários cenários geomecânicos considerando a plasticidade e variação da permeabilidade. Foram avaliadas várias repostas geomecânicas e de propriedades de fluidos no pico de pressão e final do processo SAGD. A resposta geomecânica pode ser observada, porém foi minimizada devido à baixa pressão de injeção, sendo o mecanismo de transmissão de calor um fator importante na produção de óleo (pela redução da viscosidade) e a separação vertical entre poços. Foi também significativa à contribuição da plasticidade no aumento da produção de hidrocarbonetos. A impedância acústica foi calculada usando a Equação de substituição de fluidos de Gassmann. Os sismogramas sintéticos de incidência normal (para monitorar o avanço da frente o câmara de vapor) mostraram a área afetada pela injeção de vapor, porém com pouca variação devida principalmente à rigidez da rocha. / [en] The heavy oil reserves have gained importance due to the decreasing of the present light oil reserves. Although it is necessary to reduce the oil viscosity and makes it flows to surface. For its high recovery factor the SAGD (Steam Assited Gravity Drainage) thermal process was selected. The viscosity reduction is achieved by heat transfer from steam to oil, but some part of this heat goes to rock frame. This heat transfer together with oil production change the initial in-situ stress field what creates geomechanical effects. The conventional flux simulators have a very simplified approach of geomechanical effects, so it is necessary to consider a more suitable approach that considers the coupling between oil flux and heat transfer with rock deformation. The changes within the reservoir, specially the saturation change, affect the seismical rock properties which can be used to monitor the steam chamber growth. The flux-thermal geomechanics is integrated to steam chamber monitoring 4D seismic (through the rock physics). There is a great data base, integrated by reservoir fluid properties (PVT) (used in reservoir simulation dataset) and a rock mechanics campaign. Several scenaries were simulated considering the plasticity and permeability variation. Several geomechanical responses and flux properties at peak pressure and end of SAGD process were evaluated. The geomechanical response can be observed, but was minimized due to low steam injection pressure, being the heat transfer an important in oil production (for the viscosity reduction) and the vertical well separation, too. The plasticity has a significant contribution in the increment of oil production. Acoustic impedance was calculated by using Gassmann fluid substitution approach. 2D Synthetic seismograms, normal incidence (to monitor the steam camera front advance), showed the area affected by steam injection, but with little variation due principally to rock stiffness.
|
Page generated in 0.0255 seconds