1 |
[en] A SYSTEM TO FORECAST WEEKLY LOAD ELECTRICITY DATA / [pt] SISTEMA DE PREVISÃO DE CARGA SEMANALLAURA VALERIA LOPES DE ALMEIDA 09 November 2005 (has links)
[pt] A presente dissertação tem por objetivo o estudo
quantitativo da previsão da demanda de carga elétrica
semanal para a região sudeste e em particular, para os
Estados do Rio de Janeiro e São Paulo. Foram estudadas
para tanto as séries reais dos últimos 7(sete) anos, ou
seja, de janeiro de 1991 a novembro de 1997 das
concessionárias LIGHT, CERJ, CESP, CPFL e ELETROPAULO.
Para o estudo de previsão foi utilizado o conceito in
sample, ou seja, parte real dos dados foram separados e
mais tarde comparados com os valores previstos
experimentalmente para aquela mesma época dos dados reais
separados. Desta forma, permitiu-se averiguar qual seria a
precisão da previsão, verificando-se os erros entre os
valores experimentais e reais.
Para os cálculos das previsões, também foi utilizado o
conceito de bayesiano de combinação de previsões
(outperformance) das duas técnicas a saber: redes neurais
artificiais (software Neunet) e o modelo clássico Box &
Jenkins (software Autobox).
Para se obter o valor combinado das previsões, foi
utilizado software matlab que se comportou de maneira
adequada para o estudo em questão. Além disso vale
acrescentar que o software Neunet foi utilizado, pois
possui em seu ambiente a técnica de eliminação de sinapses
enquadra-se dentro do conceito de redes neurais
multicamadas com retropropagação dos erros. / [en] The goal of this dissertation is to present a quantitative
study in time series of weekly electrical charge demand at
the southeast region, particulary at Rio de Janeiro and
São Paulo.
In this work will be analysed the last 7 years, from
january 1991 to november of 1997. The next time series
were study: LIGHT, CERJ, CESP, CPFL and ELETROPAULO.
Aimming to test the model against real data the concept of
sample data was utilized in this dissertation.
Another concept used in this work was outperformance.
Outperformance is a Bayesian concept that involves the
combination of two or more techniques in order to enchance
the forecasting results. Artificial neural network and Box
and Jenkins method are combined in this work. It is also
interesting to notice that weight elimination, which is a
new ANN technique, proved to be faster then classical back-
propagation and yielded better results.
|
2 |
[en] AN AUTOMATIC APPROACH TO BOX & JENKINS MODELLING / [pt] UM MÉTODO AUTOMÁTICO PARA PREVISÃO DE SÉRIES TEMPORIAS USANDO A METODOLOGIA BOX & JENKNISMARCELO KRIEGER 02 May 2007 (has links)
[pt] Apesar do reconhecimento amplo da qualidade das previsões
obtidas na aplicação de um modelo ARIMA à previsão de
séries temporais univariadas, seu uso tem permanecido
restrito pela falta de procedimentos automáticos,
computadorizados. Neste trabalho este problema é discutido
e um algoritmo é proposto. / [en] Inspite of general recognition of the good forecasting
ability of ARIMA models in predicting time series, this
approach is not widely used because of the lack of
automatic, computerized procedures. In this study this
problem is discussed, and an algorithm is proposed.
|
3 |
[pt] AUXÍLIO À ANÁLISE DE SÉRIES TEMPORAIS NÃO SAZONAIS USANDO REDES NEURAIS NEBULOSAS / [en] IDENTIFICATION OF NON-SEASONAL TIME SERIES THROUGH FUZZY NEURAL NETWORKSMARIA AUGUSTA SOARES MACHADO 01 December 2005 (has links)
[pt] Observando a dificuldade de batimento (match) dos padrões
de comportamento das funções de autocorrelação e de
autocorrelação parcial teóricas com as respectivas funções
e as autocorrelação e de autocorrelação parcial estimadas
de uma séries temporal, aliada ao fato da dificuldade em
definir um número em específico como delimitador
inequívoco do que seja um lag significativo, tornam clara
a dose de julgamento subjetivo a ser realizado por um
especialista de análise de séries temporais na tomada de
decisão sobre a estrutura de Box & Jenkins adequada a ser
escolhida para modelar o processo estocástico sendo
estudado. A matemática nebulosa permite a criação de
sistemas de inferências nebulosas (inferência dedutiva) e
representa o conhecimento de forma explícita, através de
regras nebulosas, possibilitando, facilmente, o
entendimento do sistema em estudo. Por outro lado, um
modelo de redes neurais representa o conhecimento de forma
implícita, adquirido através de exemplos (dados),
possuindo excelente capacidade de generalização
(inferência indutiva). Esta tese apresenta um sistema
especialista composto de cinco redes neurais nebulosas do
tipo retropropagação para o auxílio na análise de séries
temporais não sazonais. O sistema indica ao usuário a
estrutura mais adequada, dentre as estruturas AR(1), MA
(1), AR(2), MA(2) e ARMA(1,1), tomando como base a menor
distância Euclidiana entre os valores esperados e as
saídas das redes neurais nebulosas. / [en] It is well known the difficulties associated with the
tradicional procedure for model identification of the Box
& Jenkins model through the pattern matching of the
theoretical and estimated ACF and PACF. The decision on
the acceptance of the null hypothesis of zero ACF (or
PACF) for a given lag is based on a strong asymptotic
result, particularly for the PACF, leading, sometimes, to
wrong decisions on the identified order of the models.
The fuzzy logic allows one to infer system governed by
incomplete or fuzzy knowledge (deductive inference) using
a staighforward formulation of the problem via fuzzy
mathematics. On the other hand, the neural network
represent the knowledge in a implicit manner and has a
great generalization capacity (inductive inference).
In this thesis we built a specialist system composed of 5
fuzzy neural networks to help on the automatic
identificationof the following Box & Jenkins ARMA
structure AR(1), MA(1), AR(2), MA(2) and ARMA (1,1),
through the Euclidian distance between the estimated
output of the net and the corresponding patterns of each
one of the five structures.
|
4 |
[en] THE USE OF DECISION TREES, NEURAL NETWORKS AND KNN SYSTEMS TO AUTOMATICALLY IDENTIFY BOX & JENKINS NON-SEASONAL AND SEASONAL STRUCTURES / [pt] UMA APLICAÇÃO DE ÁRVORES DE DECISÃO, REDES NEURAIS E KNN PARA A IDENTIFICAÇÃO DE MODELOS ARMA NÃO-SAZONAIS E SAZONAISLUIZA MARIA OLIVEIRA DA SILVA 19 December 2005 (has links)
[pt] A metodologia Box & Jenkins tem sido mais utilizada para
fazer
previsões do que outros métodos até então. Alguns
analistas têm relutado,
entretanto, em usar esta metodologia, em parte porque a
identificação da
estrutura adequada é uma tarefa complexa. O reconhecimento
tanto dos padrões
de comportamento das funções de autocorrelação quanto da
autocorrelação
parcial (teórica/estimada) dependem da série temporal
através da qual é possível
extraí-las. Uma vez obtidos os resultados, pode-se inferir
qual o tipo de
estrutura Box & Jenkins adequada para a série. A proposta
do trabalho é
desenvolver três novas metodologias de identificação
automática das estruturas
Box & Jenkins ARMA simples e/ou sazonais, identificar os
filtros sazonal e
linear da série de uma forma menos complexa. A primeira
metodologia utiliza
árvores de decisão, a segunda, redes neurais e a terceira,
K-Nearest Neighbor
(KNN). A estas metodologias serão utilizadas as estruturas
Box & Jenkins
sazonais de períodos 3, 4, 6 e 12 e não sazonais. Os
resultados são aplicados a
séries simuladas, bem como a séries reais. Como
comparação, utilizou-se o
método automático de identificação proposto no software
FPW-XE. / [en] The Box & Jenkins is the most popular forecasting
technique. However,
some researchers have not embraced it because the
identification of its structure is
highly complex. The process of proper characterizing the
properties of both
autocorrelation functions and partial correlation
(theoretical or estimated) depends
on the time series from which they are being obtained.
Given the results in
question, it is possible to infer the proper Box & Jenkins
structure for the time
series being studied. For the reasons above, the goal of
this dissertation is to
develop three new methodologies to identifying, in an
automatic fashion, the Box
& Jenkins structure of an ARMA series. The methodologies
identify, in a simpler
manner, both the seasonal and linear filters of the
series. The first methodology
applies the decision tree. The second applies the neural
networks. The third
applies the K-Nearest Neighbor (KNN). In each of them the
Box & Jenkins
seasonal structures of 3, 4, 6 and 12 periods were used,
as well as the nonseasonal
structure. The results are applied to simulated and actual
series. For
comparison purposes, the automatic identification
procedure of the software
FPW-XE is also used.
|
Page generated in 0.0362 seconds