1 |
[en] HYBRID CLOUD RENDERING FOR INDUSTRIAL-PLANT CAD MODELS / [pt] RENDERIZAÇÃO HÍBRIDA NA NUVEM PARA MODELOS CAD DE PLANTAS INDUSTRIAISANDRE DE SOUZA MOREIRA 14 August 2020 (has links)
[pt] Os modelos CAD de plantas industriais desempenham um papel importante no gerenciamento de projetos de engenharia. Apesar dos avanços do poder computacional nas últimas décadas, a renderização destes modelos continua sendo um desafio devido à sua complexidade e ao grande volume de dados. Diferentes áreas da computação obtiveram êxito ao adotar serviços na nuvem para processar dados massivos. Contudo, quando se trata de rendering na nuvem, ainda há uma deficiência destes serviços para modelos CAD. Neste trabalho, propomos uma arquitetura de rendering híbrido na nuvem para modelos CAD, dividindo a tarefa de renderização entre o cliente e servidor. Além da diminuição da sobrecarga do servidor, esta abordagem garante ao sistema maior resiliência a variações de latência da rede. Neste trabalho também é introduzido um algoritmo de seleção de carga de trabalho baseada em metaheurística para determinar o conjunto de objetos a ser desenhado no lado do cliente. Nossos resultados demonstram que a metodologia proposta permite a visualização eficiente de modelos CAD massivos mesmo em condições adversas, como clientes com dispositivos limitados e latência alta na conexão. Por fim, discutimos as oportunidades de pesquisa restantes para renderização em nuvem, abrindo caminhos para melhorias futuras. / [en] Industrial-plant CAD models play an important role in engineering project management. Despite the advances in computing power in past decades, rendering these models remains challenging due to their complexity and large data volume. Different areas of computing have succeeded in adopting cloud services to process massive data. However, when it comes to cloud rendering, there is still a lack of cloud rendering services for CAD models. In this paper, we propose a hybrid cloud rendering architecture for CAD models, dividing the rendering task between client and server. In addition to reducing server overhead, this approach affords greater resilience to the system against variations of network latency. Finally, this work also introduces a metaheuristic-based workload selection algorithm to determine the set of objects to be drawn on the client side. Our results demonstrate that the proposed methodology allows efficient visualization of massive CAD models even under adverse conditions such as clients with limited devices and high connection latency. Lastly, we discuss remaining research opportunities for cloud rendering, opening avenues for future improvements.
|
Page generated in 0.0355 seconds