• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

[en] MACHINE LEARNING-BASED MAC PROTOCOLS FOR LORA IOT NETWORKS / [pt] PROTOCOLOS MAC BASEADOS EM APRENDIZADO DE MÁQUINA PARA REDES DE INTERNET DAS COISAS DO TIPO LORA

DAYRENE FROMETA FONSECA 24 June 2020 (has links)
[pt] Com o rápido crescimento da Internet das Coisas (IoT), surgiram novas tecnologias de comunicação sem fio para atender aos requisitos de longo alcance, baixo custo e baixo consumo de energia exigidos pelos aplicativos de IoT. Nesse contexto, surgiram as redes de longa distância de baixa potência (LPWANs), as quais oferecem diferentes soluções que atendem aos requisitos dos aplicativos de IoT mencionados anteriormente. Entre as soluções LPWAN existentes, o LoRaWAN tem-se destacado por receber atenção significativa da indústria e da academia nos últimos anos. Embora o LoRaWAN ofereça uma combinação atraente de transmissões de dados de longo alcance e baixo consumo de energia, ele ainda enfrenta vários desafios em termos de confiabilidade e escalabilidade. No entanto, devido a sua natureza de código aberto e à flexibilidade do esquema de modulação no qual ele se baseia (Long Range (LoRa) permite o ajuste de fatores de espalhamento e a potência de transmissão), o LoRaWAN também oferece importantes possibilidades de melhorias. Esta dissertação aproveita a adequação dos algoritmos de Aprendizagem por Reforço (RL) para resolver tarefas de tomada de decisão e os utiliza para ajustar dinamicamente os parâmetros de transmissão dos dispositivos finais LoRaWAN. O sistema proposto, chamado RL-LoRa, mostra melhorias significativas em termos de confiabilidade e escalabilidade quando comparado ao LoRaWAN. Especificamente, diminui a taxa de erro de pacote (PER) média do LoRaWAN em 15 porcento, o que pode aumentar ainda mais a escalabilidade da rede. / [en] With the massive growth of the Internet of Things (IoT), novel wireless communication technologies have emerged to address the long-range, lowcost, and low-power consumption requirements of the IoT applications. In this context, the Low Power Wide Area Networks (LPWANs) have appeared, offering different solutions that meet the IoT applications requirements mentioned before. Among the existing LPWAN solutions, LoRaWAN has stood out for receiving significant attention from both industry and academia in recent years. Although LoRaWAN offers a compelling combination of long-range and low-power consumption data transmissions, it still faces several challenges in terms of reliability and scalability. However, due to its open-source nature and the flexibility of the modulation scheme it is based on (Long Range (LoRa) modulation allows the adjustment of spreading factors and transmit power), LoRaWAN also offers important possibilities for improvements. This thesis takes advantage of the appropriateness of the Reinforcement Learning (RL) algorithms for solving decision-making tasks, and use them to dynamically adjust the transmission parameters of LoRaWAN end devices. The proposed system, called RL-LoRa, shows significant improvements in terms of reliability and scalability when compared with LoRaWAN. Specifically, it decreases the average Packet Error Ratio (PER) of LoRaWAN by 15 percent, which can further increase the network scalability.

Page generated in 0.0533 seconds