1 |
[en] NANOSCALE MECHANICAL DEFORMATION MECHANISMS OF POLAR AND NON-POLAR ZNO / [pt] MECANISMOS DE DEFORMAÇÃO MECÂNICA EM NANOESCALA DAS FACES POLAR E NÃO POLAR DO ZNOELIZANDRA MARTINS SILVA 17 June 2015 (has links)
[pt] Neste trabalho foi estudado o mecanismo de deformação de faces polares e
não polares do óxido de zinco (ZnO), através da introdução de defeitos mecânicos
por nanoindentação. A estrutura cristalina estável do ZnO é do tipo wurtzita, de
forte caráter anisotrópico já observado em relação a propriedades como
piezoeletricidade e polarização espontânea. O mecanismo de deformação mecânica
desses sistemas ainda não está bem esclarecido e são de vital importância na
otimização de dispositivos optoeletrônicos. A extensão dos defeitos para cada
orientação do cristal foi analisada via microscopia eletrônica de transmissão e
correlacionada com o movimento de planos basais {0001} de forma divergente, em
faces não polares (1100) e (1120), e ao movimento de planos piramidais {1011}
de forma convergente para faces polares (0001) e (0001). A extensão da
deformação induzida abaixo da superfície foi avaliada, onde foi possível identificar
a formação de discordâncias do tipo parafuso que se propagam através do sistema de escorregamento (1120)(0001), se propagando de forma altamente localizada
abaixo da superfície. O início da deformação plástica em monocristais é marcado
por eventos plásticos súbitos (pop-ins). Estes eventos foram identificados e
analisados em função da força e da extensão da deformação gerada. A topografia e
forma das impressões residuais foi analisada usando microscopia de força atômica.
Os defeitos observados no plano superficial tenderam a se propagar em direções
preferenciais num processo induzido pela formação de zonas de tensão em torno da
indentação. A formação de zonas de tensão trativa em uma dada direção aumenta a
mobilidade das discordâncias, enquanto zonas de tensão compressiva agem
contribuindo para o travamento. Estas zonas foram identificadas e a magnitude
desta tensão foi estimada via catodoluminescência. Observamos também que a face
polar (0001) apresentou um comportamento reativo, onde defeitos localizados
abaixo da superfície foram revelados através do processo de limpeza. / [en] In this work, deformation mechanisms of polar and non-polar zinc oxide
(ZnO) were studied by nanoindentation tests. The stable crystal structure of ZnO is
the wurtzite with a strong anisotropic character observed in relation to the
piezoelectricity and spontaneous polarization properties, for example. The
mechanical deformation mechanisms of these sorts of materials are not yet fully
understood, being of vital importance for optoelectronic devices optimization.For
each ZnO crystallographic orientation, the induced defects damages were analyzed
by transmission electron microscopy (TEM) and correlated with the slip of basal
planes {0001} in the divergent directions for the both non-polar faces
(1100) and (1120), as well as for the both polar faces (0001) and (0001). Screw
perfect dislocations were identified by propagating through the slip system (1120)(0001). The beginning of plastic deformation in single crystals is marked by pop-ins events. Such events were identified and analyzed in function of the applied force and size. The residual impressions topography and shape were analyzed by atomic force microscopy (AFM). The observed defects on the surface were
propagated in a preferred direction induced by stress components around the
indentation. Tensile stress generation in a certain direction increases the
dislocations mobility, while compressive stress contributes to pinning regions.
Stress components were identified and their magnitudes were estimated by cathode luminescence method. The polar face (0001) showed a reactive behavior; some defects produced underneath the surface were revealed by samples cleaning process.
|
2 |
[pt] MECANISMOS DE DEFORMAÇÃO MECÂNICA EM NANOESCALA DO NITRETO DE GÁLIO / [en] NANOSCALE MECHANICAL DEFORMATION MECHANISMS OF GALLIUM NITRIDEPAULA GALVAO CALDAS 30 October 2015 (has links)
[pt] Neste trabalho foi estudada a deformação mecânica em filmes de
GaN por nanoindentação. Um nanoindentador foi usado para induzir a
nucleação de defeitos mecânicos na superfície das amostras de forma
controlada. A morfologia das indentações e a microestrutura dos defeitos
foram estudados com o uso da microscopia de força atômica e
microscopia eletrônica de transmissão . Os resultados mostraram que nos
estágios iniciais de deformação, o processo de nanoindentação promove
o escorregamento em escala atômica de planos cristalinos que pode ser
revertido se a carga é removida. Se a carga for aumentada ainda mais, a
partir de uma tensão crítica, ocorre um grande evento pop-in com o
escorregamento dos planos 1101, 1122 e 0001 produzindo então
deformação plástica irreversível. A influência dos dopantes na deformação
mecânica foi estudada e os resultados mostraram que é mais difícil
produzir deformação mecânica em filmes de GaN dopado com Si e
dopado com Mg do que no filme não dopado. A autorrecuperação que
ocorre após a retirada da ponta foi estudada utilizando cristais de ZnO
com diferentes orientações. O mecanismo de ativação térmica dos loops
de discordância foi estudado através da observação da influência da
temperatura no processo de autorrecuperação parcial dos cristais.
Medidas de catodoluminescência foram usadas para identificar as
distribuições de tensão associadas à deformação plástica permanente
mostrando que esta induz regiões de tensão trativa ao longo das direções
a 1120 nos filmes de GaN dopado e não dopado. / [en] In this work, the mechanical deformation of GaN films was studied by
nanoindentation. A nanoindenter was used to induce the nucleation of
mechanical defects on the samples surfaces in a controlled manner. The
morphology of the indentations and the microstructure of the defects were
studied using atomic force microscopy and transmission electron
microscopy. The results showed that in the early stages of deformation,
the nanoindentation process promotes slip at the atomic scale of the
pyramidal planes of the crystal that can be reversed if the load is removed.
If load is further increased, locking of these atomic plains occur leading to
a hardened crystal region. It acts as an extension of the tip of the indenter
redistributing the applied stress. At a critical stress, a major pop-in event
occurs with the slip of the 1101, 1122 and 0001 plains leading then to
irreversible plastic deformation. The influence of doping on the mechanical
deformation has been studied and the results showed that it is more
difficult to produce mechanical deformation in GaN films doped with Si and
Mg doped than in undoped films. The self-recovery that occurs after
removal of the tip was investigated using ZnO crystals with different
orientations. The mechanism of thermal activation of dislocation loops was
studied by observing the influence of temperature on the self-recovery
process of the crystals. Cathodoluminescence measures were used to
identify the resulting stress distributions associated with permanent plastic
deformation showing that this induces tensile regions along the a 1120
directions in doped and undoped GaN films.
|
Page generated in 0.0291 seconds