• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

[en] CORPORATE RATINGS GRADE PREDICTION / [pt] PREDIÇÃO DO GRAU DE RATINGS CORPORATIVOS

ANDRE SIH 15 February 2007 (has links)
[pt] O objetivo desta dissertação é analisar a relevância de um conjunto inicial de 18 atributos tais como Despesas Financeiras, Receitas e Liquidez Corrente, dentre outros, em relação à classificação de risco (grau) de uma empresa: especulação ou investimento, conforme classificação realizada pela agência Standard & Poor s. Avaliou-se comparativamente a eficácia de métodos lineares e não-lineares de seleção de atributos tais como Análise de Componentes Principais (PCA), Informação Mútua (IM) e Informação Mútua para Seleção de Atributos com Distribuição Uniforme (MIFS-U) e métodos lineares e não-lineares de predição tais como Regressão Múltipla Linear, Discriminante Linear de Fisher e Redes Neurais. Identificou-se através destes métodos e de conhecimento a priori, um conjunto de cinco fatores (atributos) capaz de estimar com alto índice de eficácia se o grau de uma empresa é de investimento ou especulação, a saber: Lucro Líquido, EBIT, Receitas, Valor de Mercado e Setor. / [en] The purpose of this thesis is to analyze and rank the relevancy of 18 variables to S&P corporate ratings grades assignment. Beyond, we predict (classify) the Corporate Grades into two groups - Investment or Speculative. To achieve this goal, we applied and compared linear and non-linear Statistics models and Machine Learning Techniques (Multiple Linear Regression, Linear Fisher´s Discriminant, Neural Networks MLP) and feature selection methods such as Principal Component Analysis (PCA), Correlation, Mutual Information (MI) and Mutual Information for Features Selection under Uniform Distribution MIFS-U). The 17 of the initial set of 18 variables are financial variables such as Net Income, Interest Expense and Market Capitalization but one was the corporation´s Sector. Combining linear and nonlinear models and a priori knowledge, we identified a subset of five features (Net Income, EBIT, Total Revenues, Market Capitalization and Sector) that together reached up to 94.32% of success rate for the S&P grade prediction.

Page generated in 0.0511 seconds