1 |
[en] POINT AND INTERVAL FORECASTING OF HIGH-FREQUENCY TIME SERIES WITH FUZZY LOGIC SYSTEM / [pt] PREVISÕES PONTUAIS E INTERVALARES DE SÉRIES TEMPORAIS DE ALTA FREQUÊNCIA COM SISTEMA DE LÓGICA FUZZYBRUNO QUARESMA BASTOS 12 July 2017 (has links)
[pt] A previsão de séries temporais é um assunto de grande importância para diversas áreas, podendo servir como base para planejamento e controle, entre outros. As formas mais comuns de previsão são as pontuais. É arriscado, no entanto, planejadores tomarem decisões unicamente com base em previsões
pontuais, pois séries reais são compostas por uma parte aleatória que não pode ser definida por modelagem matemática. Um modo de contornar este problema é realizando previsões intervalares. Estas fornecem informações sobre as incertezas das previsões pontuais, o que auxilia o planejador em suas decisões. Modelos de lógica fuzzy têm sido investigados na literatura de previsão devido a sua capacidade de modelar incertezas. Apesar disso, sistemas de lógica fuzzy Mamdani (MFLS) foram pouco investigados no tema, comparando-se a outros tipos de modelagens fuzzy. Ademais, entende-se que a literatura de previsão intervalar com modelos fuzzy é limitada. Neste contexto, este trabalho propõe um método para construção de previsões intervalares a partir das previsões pontuais do modelo MFLS de tipo-1 (T1 MFLS). O método proposto para construção de previsões intervalares do MFLS é baseado na reamostragem de erros in-sample. O modelo T1 MFLS é construído com uma heurística (para partição do universo de discurso das variáveis do modelo) e com a seleção da entrada do modelo. Previsões pontuais e intervalares são produzidas para séries horárias de carga de energia elétrica. A literatura de modelos fuzzy de previsão é revisada. / [en] Time series forecasting is an important subject for many areas; it can serve as basis for planning and control, among others. The most common type of forecast is the point forecast. It is, nevertheless, risky to make decisions based on point forecasts, considering that real time series are composed by a random part
that cannot be exactly defined by mathematical modeling. One way to by-pass this problem is by producing interval forecasts. These provide information about point forecasts reliability, what helps the planner make his decisions. Fuzzy logic models have been investigated in the forecasting literature due to their ability to
model uncertainties. In spite of this, Mamdani fuzzy logic systems (MFLS) have been less investigated in this subject than other types of fuzzy modeling approaches. Furthermore, it is understood that the literature of interval forecasting with fuzzy models is very limited. In this context, this work proposes a method for creating interval prediction from point forecasts of a type-1 MFLS (T1 MFLS). The proposed method for interval forecast construction is based on the resampling of in-sample errors. The T1 MFLS model is constructed with a heuristic (that makes the partition of the universe of discourse of the model s variables) and with selection of the model s inputs. Point and interval forecasts are produced for hourly electricity load series. The literature of fuzzy models applied in forecasting is reviewed.
|
2 |
[en] SHORT-TERM HOURLY LOAD FORECASTING MODEL. A NEW APPROACH: HIBRID MODEL / [pt] UM NOVO MODELO HÍBRIDO PARA PREVISÃO HORÁRIA DE CARGAS ELÉTRICAS NO CURTO PRAZOTOMAS HOSHIBA KAWABATA 25 July 2002 (has links)
[pt] Quando ocorre algum tipo de falta em uma Linha de
Transmissão (LT), sua localização exata é essencial para
uma rápida recomposição do Sistema Elétrico. Métodos que
utilizam tensão e corrente de apenas um terminal contêm
simplificações que podem acarretar erros. Esta dissertação
investiga a aplicação de Redes Neurais Artificiais (RNA) na
obtenção de uma nova forma de identificar o tipo do curto-
circuito e determinar a sua localização, utilizando dados
obtidos em somente um terminal. O trabalho consiste de 4
partes principais: estudo bibliográfico da área de Redes
Neurais; simulações de faltas para a obtenção de padrões;
definição e implementação dos modelos de Redes Neurais para
identificação e localização da falta; e estudos de casos.
Na fase do estudo bibliográfico sobre RNA, foi verificado
que as topologias de redes mais usuais são as Feed
Forward, que podem ter uma ou mais camadas de Elementos
Processadores (EP), sendo as redes com múltiplas camadas
(Multi-Layer) a configuração mais completa. Para
treinamento da rede, o algoritmo de aprendizado mais
utilizado é o Back Propagation. Como fruto deste estudo
bibliográfico é apresentado neste trabalho um resumo sobre
RNA.
Nas simulações de faltas para obtenção dos padrões de
treinamento e teste, foi utilizado um sistema automático
que, através da combinação de vários parâmetros do sistema
elétrico, gera situações diferentes de falta. Este sistema
utiliza como base o programa Alternative Transient
Program -ATP. Neste trabalho o sistema elétrico está
representado por uma LT de 345 KV, com fontes equivalentes
representando um sistema real de Furnas Centrais Elétricas.
Todos o sinais de tensão e corrente utilizados são
representados por fasores de 60 Hz, obtidos através da
Transformada Discreta de Fourier (TDF).
Os modelos de RNAs para identificação e localização de
falta foram implementados com sub-rotinas de redes neurais
do programa MATLAB ver. 6.0, representados por Redes
Perceptron Multicamadas (Multi Layer Perceptron), treinadas
com algoritmo Back Propagation com taxa de aprendizado
adaptativa e o termo momentum fixo. Um modelo único de RNA
identifica quais as fases (A, B, C e T) envolvidas,
classificando o tipo de falta, que pode ser: Monofásica;
Bifásica; Bifásica-Terra ou Trifásica. Para a localização
da falta, foram definidas 4 arquiteturas de RNA, uma para
cada tipo de falta. A ativação de cada topologia de RNA
para localização é definida em função do tipo de falta
classificada no modelo de identificação com RNA.
Na etapa de estudo de casos testou-se o desempenho de cada
modelo de RNA utilizando casos de testes em outras
situações de falta, diferentes dos conjuntos de
treinamento. A RNA de identificação de falta foi avaliada
para situações de faltas envolvendo outras LTs, com
diferentes níveis de tensão. Os resultados das 4 RNAs de
localização da falta foram comparados com os resultados
obtidos utilizando o método tradicional, tanto para os
casos simulados quanto para algumas situações reais de
falta.
A utilização de RNAs para a identificação e a localização
de falta mostrouse bastante eficiente para os casos
analisados, comprovando a aplicabilidade das
redes neurais nesse problema. / [en] When a kind of fault occurs in a Transmission Line, its
exact location is essential for a fast reclosing of the
Electric System. Methods that use voltages and currents
from only one terminal contain simplifications that can to
cause mistakes. This paper presents an investigation about
application of Artificial Neural Network (ANN) obtaining a
new way of identification for the type of the short circuit
and its location, using data obtained only in one terminal.
The work consists on the following 4 main parts:
bibliographical study of Neural Network`s area;
simulations of faults in order to obtain of patterns;
definition and implementation of Neural Network`s models
for identification and location of the fault; and studies
of cases.
In the bibliographical study step on ANN, it was verified
that the topologies for the more usual nets are Feed-
|
Page generated in 0.0257 seconds