1 |
[pt] MODELO EM CÓDIGO ABERTO DE COOTIMIZAÇÃO DA ENERGIA E RESERVAS COM RESTRIÇÃO DE UNIT COMMITMENT PARA A PROGRAMAÇÃO DIÁRIA DA OPERAÇÃO SOB CRITÉRIO N-K / [en] OPEN SOURCE ENERGY AND RESERVE COOPTIMIZATION MODEL FOR DAY-AHEAD SCHEDULING WITH UNIT COMMITMENT CONSTRAINTS CONSIDERING N-K CRITERIONEROS DANILO MONTEIRO DE CARVALHO 18 December 2019 (has links)
[pt] O sistema elétrico de potência brasileiro, denominado Sistema Interli- gado Nacional – SIN, possui como órgão responsável pela operação o Op- erador Nacional do Sistema Elétrico – ONS. A fim de utilizar os recursos energéticos de forma a garantir a qualidade, confiabilidade e segurança no suprimento de energia elétrica ao menor custo total de operação, o oper- ador utiliza uma cadeia de modelos de otimização que subsidia a tomada de decisão no Programa Diário de Operação, implementado diariamente nas salas de controle do ONS e de agentes de geração para operação em tempo real. A etapa de Programação Diária do Operador Nacional do Sistema Elétrico busca estabelecer o despacho centralizado da geração e das reser- vas de potência a fim de atender à demanda prevista de energia elétrica considerando os limites da rede elétrica, das tecnologias de geração e a in- certeza de disponibilidade das unidades geradores e linhas de transmissão. Este trabalho propõe um modelo computacional programado em código aberto para a programação diária implementado na linguagem Julia. O modelo pertence à classe de modelos de unit commitment e considera a cootimização do despacho de geração e definição dos níveis de reservas em cada gerador do SIN para atender a critérios de segurança do tipo N − K . / [en] The Brazilian electric power system, called the National Interconnected System - SIN ( Sistema Interligado Nacional), has as its responsible institu- tion for operation the National Electric System Operator - ONS (Operador Nacional do Sistema Elétrico). In order to manage energy resources to en- sure quality, reliability and security of electricity supply at the lowest total operating cost, the operator uses a chain of optimization models that feeds the Daily Operation Program for decision-making, which is implemented everyday in the ONS and generators control rooms for real-time operation. The Daily Scheduling phase of the National Electric System Operator seeks to establish the centralized dispatch of generation and power reserves in order to meet the expected demand for electricity considering the limits of both the electrical grid and the generation technologies, along with the uncertainty of availability of generator units and transmission lines. This work proposes a computational model programmed in open-source for daily operation programming, implemented in the Julia language. The model be- longs to the unit commitment model class and it considers the generation dispatch cooptimization and reserve levels definition in each SIN generator to meet N-K safety criteria.
|
2 |
[en] CO-OPTIMIZING POST-CONTINGENCY TRANSMISSION SWITCHING IN POWER SYSTEM OPERATION PLANNING / [pt] CO-OTIMIZANDO TRANSMISSION SWITCHING PÓSCONTINGÊNCIA NO PLANEJAMENTO DA OPERAÇÃO DE SISTEMAS DE POTÊNCIA25 May 2020 (has links)
[pt] Transmission switching já foi apresentado anteriormente como uma ferramenta capaz de prover benefícios significativos na operação de sistemas de potência, como redução de custos e aumento de confiabilidade. Dentro do contexto de mercados co-otimizados para energia e reservas, este trabalho endereça a co-otimização de transmission switching pós-contingência no planejamento da operação de sistemas elétricos. Os modelos propostos para programação diária e despacho econômico diferem de formulações existentes devido à consideração conjunta de três fatores complicadores. Primeiro, ações de transmission switching são consideradas nos estados pré e pós-contingência, portanto requerendo variáveis binárias pós-contingência. Adicionalmente, a programação de geradores e as ações de transmission switching são co-otimizadas. Além disso, a operação de geradores é caracterizada temporalmente em um contexto multi-período. Os modelos propostos são formulados como programas inteiros-mistos desafiadores para os quais os softwares comerciais comumente utilizados para modelos mais simples podem levar à intratabilidade até para instâncias de tamanho moderado. Como metodologia de solução, nós apresentamos uma versão aperfeiçoada de um algoritmo de geração de colunas e restrições aninhado, com a adição de restrições válidas para melhorar o desempenho computacional. Simulações numéricas demonstram o desempenho efetivo da abordagem proposta,
assim como suas vantagens econômicas e operacionais sobre modelos existentes que desconsideram o transmission switching pós-contingência. / [en] Transmission switching has been previously shown to offer significant benefits to power system operation, such as cost savings and reliability enhancements. Within the context of co-optimized electricity markets for energy and reserves, this work addresses the co-optimization of post contingency transmission switching in power system operation planning. The proposed models for unit commitment and economic dispatch differ from existing formulations due to the joint consideration of three major complicating factors. First, transmission switching actions are considered both in the preand post-contingency states, thereby requiring binary post-contingency variables. Secondly, generation scheduling and transmission switching actions are co-optimized. In addition, the time coupled operation of generating units is precisely characterized. The proposed models are formulated as challenging mixed-integer programs for which the off-the-shelf software customarily used for simpler models may lead to intractability even for moderatelysized instances. As a solution methodology, we present enhanced versions of an exact nested column-and-constraint generation algorithm featuring the inclusion of valid constraints to improve the overall computational performance. Numerical simulations demonstrate the effective performance of the proposed approach as well as its economic
and operational advantages over existing models disregarding post-contingency transmission switching.
|
3 |
[pt] ENSAIOS EM MODELOS DE DOIS ESTÁGIOS EM SISTEMAS DE POTÊNCIAS: CONTRIBUIÇÕES EM MODELAGEM E APLICAÇÕES DO MÉTODO DE GERAÇÃO DE LINHAS E COLUNAS / [en] ESSAYS ON TWO-STAGE ROBUST MODELS FOR POWER SYSTEMS: MODELING CONTRIBUTIONS AND APPLICATIONS OF THE COLUMN-AND-CONSTRAINT-GENERATION ALGORITHMALEXANDRE VELLOSO PEREIRA RODRIGUES 07 December 2020 (has links)
[pt] Esta dissertação está estruturada como uma coleção de cinco artigos formatados em capítulos. Os quatro primeiros artigos apresentam contribuições em modelagem e metodológicas para problemas de operação
ou investimento em sistemas de potência usando arcabouço de otimização robusta adaptativa e modificações no algoritmo de geração de linhas e colunas (CCGA). O primeiro artigo aborda a programação de curto prazo com restrição de segurança, onde a resposta automática de geradores é considerada. Um modelo robusto de dois estágios é adotado, resultando em complexas instâncias de programação inteira mista, que apresentam variáveis binárias associadas às decisões de primeiro e segundo estágios.
Um novo CCGA que explora a estrutura do problema é desenvolvido. O segundo artigo usa redes neurais profundas para aprender o mapeamento das demandas nodais aos pontos de ajuste dos geradores para o problema do primeiro artigo. O CCGA é usados para garantir a viabilidade da solução. Este método resulta em importantes ganhos computacionais em relação ao primeiro artigo. O terceiro artigo propõe uma abordagem adaptativa em dois estágios para um modelo robusto de programação diária no qual o
conjunto de incerteza poliedral é caracterizado diretamente a partir dos dados de geração não despachável observados. O problema resultante é afeito ao CCGA. O quarto artigo propõe um modelo de dois estágios adaptativo, robusto em distribuição para expansão de transmissão, incorporando incertezas a longo e curto prazo. Um novo CCGA é desenvolvido para lidar com os subproblemas. Finalmente, sob uma perspectiva diferente e generalista, o quinto artigo investiga a adequação de prêmios de incentivo para promover inovações em aspectos teóricos e computacionais para os desafios de sistemas de potência modernos. / [en] This dissertation is structured as a collection of five papers formatted as chapters. The first four papers provide modeling and methodological contributions in scheduling or investment problems in power systems
using the adaptive robust optimization framework and modifications to the column-and-constraint-generation algorithm (CCGA). The first paper addresses the security-constrained short-term scheduling problem where automatic primary response is considered. A two-stage robust model is adopted, resulting in complex mixed-integer linear instances featuring binary variables associated with first- and second-stage decisions. A new tailored CCGA which explores the structure of the problem is devised. The second paper uses deep neural networks for learning the mapping of nodal demands onto generators set point for the first paper s model. Robust-based modeling approaches and the CCGA are used to enforce feasibility for the solution. This method results in important computational gains as compared to results of the first paper. The third paper proposes an adaptive data-driven approach for a two-stage robust unit commitment model, where the polyhedral uncertainty set is characterized directly from data, through the convex hull of a set of previously observed non-dispatchable generation profiles. The resulting problem is suitable for the exact CCGA. The fourth paper proposes an adaptive two-stage distributionally robust transmission
expansion model incorporating long- and short-term uncertainties. A novel extended CCGA is devised to tackle distributionally robust subproblems. Finally, under a different and higher-level perspective, the fifth paper investigates the adequacy of systematic inducement prizes for fostering innovations in theoretical and computational aspects for various modern power systems challenges.
|
Page generated in 0.0303 seconds