1 |
[en] HYBRID SYSTEM FOR RULE EXTRACTION APPLIED TO DIAGNOSIS OF POWER TRANSFORMERS / [pt] SISTEMA HÍBRIDO DE EXTRAÇÃO DE REGRAS APLICADO A DIAGNÓSTICO DE TRANSFORMADORESCINTIA DE FARIA FERREIRA CARRARO 28 November 2012 (has links)
[pt] Este trabalho tem como objetivo construir um classificador baseado em
regras de inferência fuzzy, as quais são extraídas a partir de máquinas de vetor
suporte (SVMs) e ajustadas com o auxílio de um algoritmo genético. O
classificador construído visa a diagnosticar transformadores de potência. As
SVMs são sistemas de aprendizado baseados na teoria do aprendizado
estatístico e apresentam boa habilidade de generalização em conjuntos de
dados reais. SVMs, da mesma forma que redes neurais (RN), geram um
modelo caixa preta, isto é, um modelo que não explica o processo pelo qual
sua saída é obtida. Entretanto, para alguns problemas, o conhecimento sobre
como a classificação foi obtida é tão importante quanto a classificação
propriamente dita. Alguns métodos propostos para reduzir ou eliminar essa
limitação já foram desenvolvidos, embora sejam restritos à extração de regras
simbólicas, isto é, contêm funções ou intervalos nos antecedentes das regras.
No entanto, a interpretabilidade de regras simbólicas ainda é reduzida. De forma
a aumentar a interpretabilidade das regras, o modelo FREx_SVM foi
desenvolvido. Neste modelo as regras fuzzy são extraídas a partir de SVMs
treinadas. O modelo FREx_SVM pode ser aplicado a problemas de classificação
com n classes, não sendo restrito a classificações binárias. Entretanto, apesar
do bom desempenho do modelo FREx_SVM na extração de regras linguísticas,
o desempenho de classificação do sistema de inferência fuzzy obtido é ainda
inferior ao da SVM, uma vez que as partições (conjuntos fuzzy) das variáveis de
entrada são definidas a priori, permanecendo fixas durante o processo de
aprendizado das regras. O objetivo desta dissertação é, portanto, estender o
modelo FREx_SVM, de forma a permitir o ajuste automático das funções de
pertinência das variáveis de entrada através de algoritmos genéticos. Para
avaliar o desempenho do modelo estendido, foram realizados estudos de caso
em dois bancos de dados: Iris, como uma base benchmark, e a análise de
resposta em frequência. A análise de resposta em frequência é uma técnica não
invasiva e não destrutiva, pois preserva as características dos equipamentos. No
entanto, o diagnóstico é feito de modo visual comparativo e requer o auxílio de
um especialista. Muitas vezes, este diagnóstico é subjetivo e inconclusivo. O
ajuste automático das funções de pertinência correspondentes aos conjuntos
fuzzy associados às variáveis de entrada reduziu o erro de classificação em até
13,38 por cento em relação à configuração sem este ajuste. Em alguns casos, o
desempenho da configuração com ajuste das funções de pertinência supera até
mesmo aquele obtido pela própria SVM. / [en] This work aims to develop a classifier model based on fuzzy inference
rules, which are extracted from support vector machines (SVMs) and optimized
by a genetic algorithm. The classifier built aims to diagnose power transformers.
The SVMs are learning systems based on statistical learning theory and have
provided good generalization performance in real data sets. SVMs, as artificial
neural networks (NN), generate a black box model, that is, a model that does not
explain the process by which its output is obtained. However, for some
applications, the knowledge about how the classification was obtained is as
important as the classification itself. Some proposed methods to reduce or
eliminate this limitation have already been developed, although they are
restricted to the extraction of symbolic rules, i.e. contain functions or ranges in
the rules´ antecedents. Nevertheless, the interpretability of symbolic rules is still
reduced. In order to increase the interpretability of the rules, the FREx_SVM
model was developed. In this model the fuzzy rules are extracted from trained
SVMs. The FREx_SVM model can be applied to classification problems with n
classes, not being restricted to binary classifications. However, despite the good
performance of the FREx_SVM model in extracting linguistic rules, the
classification performance of fuzzy classification system obtained is still lower
than the SVM, since the partitions (fuzzy sets) of the input variables are predefined
at the beginning of the process, and are fixed during the rule extraction
process. The goal of this dissertation is, therefore, to extend the FREx_SVM
model, so as to enable the automatic adjustment of the membership functions of
the input variables through genetic algorithms. To assess the performance of the
extended model, case studies were carried out in two databases: iris benchmark
and frequency response analysis. The frequency response analysis is a noninvasive
and non-destructive technique, because it preserves the characteristics
of the equipment. However, the diagnosis is carried out by visual comparison and
requires the assistance of an expert. Often, this diagnosis is subjective and
inconclusive. The automatic adjustment of the membership functions associated
with input variables reduced the error up to 13.38 per cent when compared to the
configuration without this optimization. In some cases, the classification
performance with membership functions optimization exceeds even those
obtained by SVM.
|
Page generated in 0.0466 seconds