• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

[pt] AUTO LOCALIZAÇÃO DE ROBÔS MÓVEIS POR FUSÃO DE SENSORES NA PRESENÇA DE INTERFERÊNCIA ELETROMAGNÉTICA / [en] SELF-LOCALIZATION OF MOBILE ROBOTS THROUGH SENSOR FUSION IN THE PRESENCE OF ELECTROMAGNETIC INTERFERENCE

18 March 2021 (has links)
[pt] A inspeção interna de tanques de armazenamento pode ser uma tarefa longa, custosa e até nociva à saúde do inspetor. Uma alternativa à inspeção humana é a utilização de sistemas robóticos. Esses sistemas podem ser teleoperados de fora dos tanques, permitindo realizar a inspeção de maneira mais segura, rápida, e em alguns casos, sem que seja necessário esvaziá-lo. Para poder fornecer a localização de eventuais defeitos no tanque, o robô móvel precisa ser capaz de conhecer sua posição relativa dentro dele. Auto-localização é de grande importância para a navegação de robôs móveis. Robôs de inspeção são, na sua maioria, veículos de rodas ou esteiras magnéticas fixas. Esta configuração adiciona duas dificuldades que precisam ser abordadas na tarefa de localização. Devido à sua configuração, neste tipo de veículo, deslizamento das rodas é intrínseco ao seu funcionamento, sendo essencial levar em conta seu efeito para modelar seu comportamento adequadamente. Outra dificuldade está no uso de rodas magnéticas, devido ao forte campo magnético gerado por estes elementos, que interferem nas medições de sensores magnéticos, como por exemplo bússolas. Neste trabalho, um filtro de Kalman foi desenvolvido e implementado para a localização de um robô de quatro rodas magnéticas fixas, a partir da fusão de sensores inerciais e odometria. Na modelagem do veículo, foi utilizado um modelo cinemático como base para um modelo dinâmico, o que permitiu considerar o deslizamento intrínseco do sistema. Na fusão de sensores, foram dispensadas as medições do magnetômetro embarcado, devido à grande interferência produzida pelas rodas e à grande distância que seria necessária entre eles para não ser afetado pelo ruído. Simulações e experimentos comprovaram a eficiência do filtro implementado. / [en] Internal inspection of storage tanks can be long, costly and even detrimental to the health of the inspector. An alternative to human inspection is the use of robotic systems. These systems can be teleoperated from outside the tanks, making it possible to carry out the inspection more safely, quickly and in some cases without having to empty it. In order to provide the location of any defects in the tank, the mobile robot must be able to know its relative position within it. Self-localization is of great importance for mobile robot navigation. Inspection robots are, for the most part, vehicles with wheels or tracks. This configuration adds two difficulties that need to be addressed in the localization task. Due to its configuration, in this type of vehicle, wheel slip is intrinsic to its operation, being essential to take into account its effect to model its behavior properly. Another difficulty is the use of magnetic wheels, due to the strong magnetic field generated by these elements, which interfere with the measurements of magnetic sensors, such as compasses. In this work, a Kalman filter was developed and implemented for the localization of a four-wheel fixed magnetic robot, from the fusion of inertial sensors and odometry. In the modeling of the vehicle, a kinematic model was used as the basis for a dynamic model, which allowed to consider the intrinsic slippage of the system. In the sensor fusion, measurements of the magnetometer on board were discarded, due to the great interference produced by the wheels and the great distance that would be necessary between them to be unaffected by noise. Simulations and experiments have proven the efficiency of the implemented filter.
2

[pt] MODELAGEM E CONTROLE CINEMÁTICO DE UM ROBÔ MÓVEL PARA NAVEGAÇÃO AUTÔNOMA EM CAMPOS AGRÍCOLAS / [en] MODELING AND KINEMATIC CONTROL OF A MOBILE ROBOT FOR AUTONOMOUS NAVIGATION IN AGRICULTURAL FIELDS

ADALBERTO IGOR DE SOUZA OLIVEIRA 25 February 2021 (has links)
[pt] Nos últimos anos, os robôs móveis têm emergido como uma solução alternativa para o aumento do nível de automação e mecanização na agricultura. Neste contexto, o foco da agricultura de precisão é a otimização do uso de insumos, redução de perdas nas lavouras, redução do desperdício de água e melhorar a produtividade em áreas cada vez menores, tornando a produção mais eficiente e sustentável. Os robôs agrícolas, ou AgBots podem ser controlados remotamente ou atuar de forma autônoma, utilizando diferentes sistemas de locomoção, bem como serem equipados com atuadores e sensores que lhes permitem realizar diversas tarefas agrícolas, tais como plantio, colheita, poda, fenotipagem, monitoramento e coleta de dado, entre outros. Neste trabalho será realizado um estudo em robôs móveis com rodas direcionado para os modelos de tração diferencial e no modelo similar ao carro (com atuação do sistema de direção) e suas aplicações em navegação autônoma em ambientes agrícolas. A modelagem e o projeto de controle baseiam-se em técnica clássicas e avançadas, utilizando abordagens de controle robusto por modo deslisante, tanto de primeira como de segunda ordens (Super Twisting Algorithm) para lidar com incertezas e interferências externas, comumente encontradas no tipo de ambiente agrícola a que se destina. Teste de verificação e validação são realizados através de simulações numéricas (MATLAB) e em ambiente de virtualização 3D (Gazebo). Testes experimentais preliminares são incluídos para ilustrarem as possibilidades de aplicação das metodologias de controle propostas em um ambiente real. Conclusões a respeito do trabalho são apresentadas, desenvolvendo uma discussão sobre os seus pontos mais relevantes, bem como sobre as perspectivas de melhorias futuras e pontos que ainda podem ser melhor pesquisados. / [en] In the last years, mobile robots have emerged as an alternative solution for increasing the levels of automation and mechanization in agricultural fields. In this context, the key idea of precision agriculture is to optimize the use of production inputs, crop losses, waste of water and to increase the crop production in small areas, in an efficient and sustainable manner. Agricultural robots or AgBots may be autonomous or remotely controlled, being endowed with different types of locomotion apparatus, actuation and sensory systems, as well as specialized tools which enable them to carry out a number of agricultural tasks such as, seeding, pruning, harvesting, phenotyping, monitoring and data collection. In this work, we perform a study on two type of wheeled mobile robots (i.e., differential-drive and car-like) and their application for autonomous navigation in agricultural fields. The modeling and control design is based on classical and advanced approaches, using robust control approaches such as Sliding Mode Control (first order) and Super Twisting Algorithm (second order) to deal with parametric uncertainties and external disturbances, commonly founded in agricultural fields. Verification and validation are carried out by means of numerical simulations in MATLAB and 3D computer simulations in Gazebo. Preliminary experimental tests are included to illustrate the performance and feasibility of the proposed modeling and control methodologies. Concluding remarks and perspectives are presented to summarize the strengths and weaknesses of the proposed solution and to suggest the scope for future improvements.
3

[en] MOBILE ROBOT SIMULTANEOUS LOCALIZATION AND MAPPING USING DP-SLAM WITH A SINGLE LASER RANGE FINDER / [pt] MAPEAMENTO E LOCALIZAÇÃO SIMULTÂNEA DE ROBÔS MÓVEIS USANDO DP-SLAM E UM ÚNICO MEDIDOR LASER POR VARREDURA

LUIS ERNESTO YNOQUIO HERRERA 31 July 2018 (has links)
[pt] SLAM (Mapeamento e Localização Simultânea) é uma das áreas mais pesquisadas na Robótica móvel. Trata-se do problema, num robô móvel, de construir um mapa sem conhecimento prévio do ambiente e ao mesmo tempo manter a sua localização nele. Embora a tecnologia ofereça sensores cada vez mais precisos, pequenos erros na medição são acumulados comprometendo a precisão na localização, sendo estes evidentes quando o robô retorna a uma posição inicial depois de percorrer um longo caminho. Assim, para melhoria do desempenho do SLAM é necessário representar a sua formulação usando teoria das probabilidades. O SLAM com Filtro Extendido de Kalman (EKF-SLAM) é uma solução básica, e apesar de suas limitações é a técnica mais popular. O Fast SLAM, por outro lado, resolve algumas limitações do EKF-SLAM usando uma instância do filtro de partículas conhecida como Rao-Blackwellized. Outra solução bem sucedida é o DP-SLAM, o qual usa uma representação do mapa em forma de grade de ocupação, com um algoritmo hierárquico que constrói mapas 2D bastante precisos. Todos estes algoritmos usam informação de dois tipos de sensores: odômetros e sensores de distância. O Laser Range Finder (LRF) é um medidor laser de distância por varredura, e pela sua precisão é bastante usado na correção do erro em odômetros. Este trabalho apresenta uma detalhada implementação destas três soluções para o SLAM, focalizado em ambientes fechados e estruturados. Apresenta-se a construção de mapas 2D e 3D em terrenos planos tais como em aplicações típicas de ambientes fechados. A representação dos mapas 2D é feita na forma de grade de ocupação. Por outro lado, a representação dos mapas 3D é feita na forma de nuvem de pontos ao invés de grade, para reduzir o custo computacional. É considerado um robô móvel equipado com apenas um LRF, sem nenhuma informação de odometria. O alinhamento entre varreduras laser é otimizado fazendo o uso de Algoritmos Genéticos. Assim, podem-se construir mapas e ao mesmo tempo localizar o robô sem necessidade de odômetros ou outros sensores. Um simulador em Matlab é implementado para a geração de varreduras virtuais de um LRF em um ambiente 3D (virtual). A metodologia proposta é validada com os dados simulados, assim como com dados experimentais obtidos da literatura, demonstrando a possibilidade de construção de mapas 3D com apenas um sensor LRF. / [en] Simultaneous Localization and Mapping (SLAM) is one of the most widely researched areas of Robotics. It addresses the mobile robot problem of generating a map without prior knowledge of the environment, while keeping track of its position. Although technology offers increasingly accurate position sensors, even small measurement errors can accumulate and compromise the localization accuracy. This becomes evident when programming a robot to return to its original position after traveling a long distance, based only on its sensor readings. Thus, to improve SLAM s performance it is necessary to represent its formulation using probability theory. The Extended Kalman Filter SLAM (EKF-SLAM) is a basic solution and, despite its shortcomings, it is by far the most popular technique. Fast SLAM, on the other hand, solves some limitations of the EKFSLAM using an instance of the Rao-Blackwellized particle filter. Another successful solution is to use the DP-SLAM approach, which uses a grid representation and a hierarchical algorithm to build accurate 2D maps. All SLAM solutions require two types of sensor information: odometry and range measurement. Laser Range Finders (LRF) are popular range measurement sensors and, because of their accuracy, are well suited for odometry error correction. Furthermore, the odometer may even be eliminated from the system if multiple consecutive LRF scans are matched. This works presents a detailed implementation of these three SLAM solutions, focused on structured indoor environments. The implementation is able to map 2D environments, as well as 3D environments with planar terrain, such as in a typical indoor application. The 2D application is able to automatically generate a stochastic grid map. On the other hand, the 3D problem uses a point cloud representation of the map, instead of a 3D grid, to reduce the SLAM computational effort. The considered mobile robot only uses a single LRF, without any odometry information. A Genetic Algorithm is presented to optimize the matching of LRF scans taken at different instants. Such matching is able not only to map the environment but also localize the robot, without the need for odometers or other sensors. A simulation program is implemented in Matlab to generate virtual LRF readings of a mobile robot in a 3D environment. Both simulated readings and experimental data from the literature are independently used to validate the proposed methodology, automatically generating 3D maps using just a single LRF.

Page generated in 0.0385 seconds