1 |
[en] THERMODYNAMIC NONEXTENSIVITY, DISCRETE SCALE INVARIANCE AND ELASTOPLASTICITY: A STUDY OF A SELF-ORGANIZED CRITICAL GEOMECHANICAL NUMERICAL MODEL / [pt] NÃO-EXTENSIVIDADE TERMODINÂMICA, INVARIÂNCIA DISCRETA DE ESCALA E ELASTO-PLASTICIDADE: ESTUDO NUMÉRICO DE UM MODELO GEOMECÂNICO AUTO-ORGANIZADO CRITICAMENTEARMANDO PRESTES DE MENEZES FILHO 02 December 2003 (has links)
[pt] Esta tese busca utilizar os novos conceitos físicos
relacionados à física do estado sólido e à mecânica
estatística - teoria do caos e geometria fractal - na
análise do comportamento de sistemas dinâmicos não-lineares.
Mais pormenorizadamente, trata-se de estudar o
comportamento de um modelo numérico elasto-plástico com
função de escoamento de Mohr-Coulomb, usualmente empregado
em simulações de materiais geológicos - cimentados ou
não -, quando submetido a carregamentos externos, situação
esta geralmente encontrada em problemas afeitos à mecânica
dos solos e das rochas (p/ex., estabilidade de taludes e
escavações subterrâneas). Mostra-se que tal modelo
geomecânico de muitos corpos (many-body) interagentes é
conduzido espontaneamente, ao longo de sua evolução
temporal, à chamada criticalidade auto-organizada (self-
organized criticality - SOC), estado caracterizado por
apresentar evolução na fronteira entre ordem e caos,
sensibilidade extrema a qualquer pequena perturbação, e
desenvolvimento de interações espaço-temporais de longo
alcance. Como a evolução de qualquer sistema dinâmico pode
ser vista como um fluxo ininterrupto de informações entre
suas partes constituintes, avaliou-se, para tal sistema, a
entropia de Tsallis, formulação original proposta pelo
físico brasileiro Constantino Tsallis, do Centro Brasileiro
de Pesquisas Físicas (CBPF), tendo se mostrado adequada à
sua descrição. Em especial, determinou-se para tal sistema,
pela primeira vez, o valor do índice entrópico, que
parametriza a aludida forma entrópica alternativa. Ademais,
como é característico de sistemas fora do equilíbrio
regidos por uma dinâmica de limiar, mostra-se que tal
sistema geomecânico, durante o seu desenvolvimento, teve a
sua simetria translacional inicial quebrada, sendo
substituída pela simetria por escala, auto-semelhante
(i.é., fractal). Em decorrência, o modelo exibe a chamada
invariância discreta de escala (discrete scale invariance -
DSI), fruto do processo mesmo de ruptura progressiva do
material heterogêneo. Especificamente, as simulações
numéricas sugeriram que o processo de ruptura progressiva
do material elasto-plástico se dá por uma transferência
multiplicativa de tensões, em diferentes escalas de
observação hierarquicamente dispostas, acarretando o
aparecimento de sinais bastante peculiares, caracterizados
por desvios oscilatórios sistemáticos do padrão em lei de
potência, o que possibilita a previsão de sua ruína, quando
ainda em fase preparatória. Assim, esta pesquisa mostrou a
eficiência de tal método de previsão, aplicado, pela
primeira vez, não somente aos resultados das simulações
numéricas do referido modelo geomecânico, como aos ensaios
de laboratório em rochas sedimentares, realizados no Centro
de Pesquisas da Petrobrás (CENPES). Por fim, é interessante
assinalar que o material elasto-plástico investigado neste
trabalho teve seu comportamento compartilhado por um modelo
matemático bastante simples, fundamentado na função
binomial multifractal, reconhecida por descrever processos
multiplicativos em diferentes escalas. / [en] This thesis aims at applying new concepts from solid state
physics and statistical mechanics - chaos theory and
fractal geometry - to the study of nonlinear dynamic
systems. More precisely, it deals with a two-dimensional
continuum elastoplastic Mohr-Coulomb model, commonly used
to simulate pressure-sensitive materials (e.g., soils,
rocks and concrete) subjected to stress-strain fields,
normally found in general soil or rock mechanics problems
(e.g., slope stability and underground excavations).
It is shown that such many-body system is spontaneously
driven to a state at the edge of chaos, called self-
organized criticality (SOC), capable of developing long-
range interactions in space and long-range memory in time.
A new entropic form proposed by C. Tsallis is presented and
shown that it is the suitable theoretical framework to deal
with these problems. Furthermore, the index q of the
Tsallis entropy, which measures the degree of non-
additivity of the system, is calculated, for the first
time, for an elastoplastic model. In addition, as is usual
in non-equilibrium systems with threshold dynamics, the
model changes its symmetry, from translational to fractal
(that is, self-similar), leading to what is called discrete
scale invariance. It is shown that this special type of
scale invariance, characterized by systematic oscillatory
deviations from the fundamental power-law behavior, can
be used to predict the failure of heterogeneous materials,
while the process is still being build-up, i.e., from
precursory signals, typical of progressive failure
processes. Specifically, this framework was applied, for
the first time, not only to the elastoplastic geomechanical
model, but to laboratory tests in sedimentary rocks as
well. Finally, it is interesting to realize that the above-
mentioned behaviors are also displayed by the binomial
multifractal function, known to adequately describe
multiplicative cascading processes.
|
Page generated in 0.3059 seconds