1 |
[pt] DESEMPENHO MECÂNICO DE COMPÓSITOS CIMENTÍCIOS DE COMPORTAMENTO STRAIN-HARDENING SUBMETIDOS A CARREGAMENTOS COMBINADOS E DE IMPACTO / [en] ON THE MECHANICAL BEHAVIOR OF STRAIN HARDENING CEMENTITIOUS COMPOSITES (SHCC) UNDER COMBINED AND IMPACT LOADINGTATHIANA CARAM SOUZA DE PAULA FIGUEIREDO 24 May 2022 (has links)
[pt] O concreto armado (CA) tem sido amplamente utilizado em construções civis
durante quase dois séculos devido a sua versatilidade e relativamente baixo custobenefício
quando comparado com outros sistemas estruturais. É, notoriamente, o
sistema mais adotado na construção de obras estratégicas e de infraestrutura. No
entanto, as construções de CA estão em constante deterioração. Sobretudo nas
últimas décadas, atenção especial vem sendo dada à influência de cenários
dinâmicos nesse tipo de sistema estrutural devido à intrínseca baixa resistência à
tração e fragilidade do concreto, que promovem extensos horizontes de fissuração
na ocorrência desses eventos. A presente investigação dedicou-se à avaliação de
duas variações de compósitos cimentícios de comportamento strain-hardening
(SHCC) como material de reforço para melhorar a resistência ao impacto de
edifícios existentes, em especial membros estruturais com falhas críticas por
cisalhamento. SHCC é uma classe relativamente nova de compósito cimentício
reforçado com fibras, em geral microfibras sintéticas com fração volumétrica média
de 2 %. Estudos recentes já demonstraram que este compósito é capaz de deformarse
substancialmente quando submetido à tração direta (até 6% dependendo da
dosagem) durante o estágio de múltipla-fissuração, enquanto sustenta uma abertura
de fissura de até 100 μm. O SHCC parece especialmente adequado para resistir a
impactos de alta velocidade devido ao número relevante de superfícies que se
formam durante a sua fase de deformação, uma vez que a grande quantidade de
superfícies que são formadas durante o processo de múltipla-fissuração representa
uma perspectiva elevada de dissipação de energia sem reduzir a capacidade de
carregamento. Dois tipos de SHCC de resistência normal foram escolhidos para
serem avaliados nesta investigação. Os compósitos diferenciavam-se principalmente no tipo de fibra de reforço: PVA e UHMWPE. Como os elementos
estruturais incorporados em estruturas estão frequentemente sujeitos a estados
multiaxiais de tensão, para avaliar o potencial de SHCC como material de reforço,
ensaios combinados de torção e tensão foram desenvolvidos. Tais resultados
permitiram o aprofundamento da compreensão do desempenho mecânico dos
SHCC em análise sob cisalhamento, ao mesmo tempo que permitem a combinação
desses esforços com tensões normais de tração. Em seguida, o potencial efetivo do
SHCC no melhoramento da resistência e resiliência de elementos estruturais
existentes a cargas de impacto foi investigado por um extenso programa
experimental que contou com 24 vigas de escala real. Os parâmetros variados
foram: (i) o tipo de SHCC; (ii) a configuração de reforço interno (espécimes com e
sem estribos); (iii) a energia de impacto (que variou entre 2,1 kJ e 6,4 kJ,
correspondendo a velocidades aproximadas de 17 m/s a 30 m/s, respectivamente).
Os resultados foram avaliados em termos da resposta mecânica, padrões de
fissuração, e análise modal. Foi demonstrado que ambos os tipos de SHCC
contribuíram para a melhora da resistência ao impacto das vigas de CA reforçadas,
melhorando expressivamente a resposta dinâmica residual e de estabilidade,
enquanto contribuíram efetivamente para segurança de usuários ao propiciar uma
redução substancial de detritos desprendidos durante os testes. O SHCC reforçado
com fibras de UHMWPE mostrou-se menos sensível à presença ou ausência de
estribos, sugerindo que esse compósito seja o mais adequado para aplicações de
reforço de cisalhamento em cenários dinâmicos onde existe uma deficiência, ou
incerteza, sobre o reforço transversal interno dos membros existentes. / [en] Reinforced concrete (RC) has been widely used in civil constructions for
almost two centuries due to its versatility and relatively low cost-effectiveness ratio
when compared with other structural systems. It is notably the preferred material
for the construction of strategic infrastructures. However, RC constructions are in
constant deterioration. Special attention had been given in the last decades to the
influence of dynamic scenarios on RC structures due to concrete s inherent low
tensile strength and brittle nature, which promotes intense cracking during these
events. The present research focused on the assessment of two variations of strainhardening
cementitious composites (SHCC) as strengthening material to improve
the impact resistance of existing buildings, moreover structural members with
critical shear failure. SHCC is a somewhat new class of fiber-reinforced composite
reinforced with synthetic microfibers with an average content of 2 % in volume.
Previous research studies already demonstrated that this composite is able to yield
substantial deformations under tension (up to 6 % depending on the dosage) during
its multiple-cracking phase, while enduring a crack-width limit of 100 μm. SHCC
seems especially appropriate to withstand high-velocity impacts due to the relevant
number of surfaces that are formed during its deformation phase since it represents
a high perspective of energy dissipation without reducing load-bearing capacity.
Two types of normal-strength SHCC were chosen to be assessed in this research.
The composites differed mainly in the type of reinforcing fiber: PVA, and
UHMWPE. As structural members embodied in structures are often subjected to
multiaxial stress states, to evaluate SHCC´s potential as a strengthening material,
combined torsion and tension tests were developed. These tests deepen the
understanding of SHCC s mechanical performance under shear, while also enabled the combination with normal stresses. Then, SHCC s actual potential to improve the
impact resistance and afterlife of existing structural members was investigated
during an extensive experimental program that counted with 24 real-scale beams.
The varied parameters were: (i) the type of SHCC; (ii) the internal reinforcement
configuration (specimens with, and without stirrups); (iii) the impact energy (which
was varied between 2.1 kJ and 6.4 kJ, corresponding to approximated velocities of
17 m/s to 30 m/s, respectively). The results were assessed in terms of their
mechanical response, cracking patterns, and modal analysis. It was demonstrated
that both types of composites improved the impact resistance of the strengthened
RC members, outstandingly improving the impact safety with regards to residual
dynamic response and stability while presenting a substantial reduction of spalling
and scabbing material. The SHCC produced with UHMWPE fibers appeared to be
less sensitive to the presence or absence of stirrups, posing as more suitable
alternative for shear strengthening applications within dynamic scenarios where
there is a deficient, or even uncertainty, about the internal transversal reinforcement
of the existing members.
|
2 |
[pt] COMPORTAMENTO MECÂNICO DE COMPÓSITOS CIMENTÍCIOS DO TIPO SHCC UTILIZANDO REFORÇOS HÍBRIDOS / [en] MECHANICAL BEHAVIOUR OF HYBRID FIBER-REINFORCED STRAIN HARDENING CEMENTITIOUS COMPOSITES15 September 2020 (has links)
[pt] O presente trabalho investigou o comportamento mecânico de compósitos
cimentícios do tipo SHCC (Strain Hardening Cementitious Composites) de
resistência comum e alta resistência, reforçados com fibras de PVA, UHMWPE
(polietileno de peso molecular ultra-elevado), aço e reforços híbridos. Para o
estudo, o volume total de fibras foi mantido constante em 2,0 por cento, com objetivo de
manter a trabalhabilidade dos compósitos. As fibras de PVA e polietileno foram
parcialmente substituídas por fibras de aço na proporção de 0,5 por cento e 1,0 por cento e a
resposta mecânica foi estudada a partir de ensaios de tração direta, flexão de quatro
pontos em placas e ensaios de flexão de três pontos em prismas com entalhe. O
padrão de fissuração foi analisado utilizando imagens de alta resolução. O efeito escala
dos compósitos reforçados com fibras de PVA e polietileno também foi
investigado através de ensaios de tração direta e de flexão de quatro pontos
utilizando dois tamanhos de corpos de prova. Os resultados mostraram que as fibras
de PVA têm melhor desempenho que as fibras de polietileno para matrizes de
resistência comum e que para ambas as matrízes, a substituição parcial das fibras
de polietileno e PVA por fibras de aço tem o benefício de aumentar a resistência,
mas promove redução na capacidade de deformação dos compósitos. O estudo
sobre o efeito-escala também mostrou que a resposta mecânica destes materiais
muda com a geometria dos corpos de prova. Por último, os compósitos foram
utilizados como materiais de reparo estrutural em vigas submetidas a dano prévio e
os resultados mostraram a viabilidade da utilização do SHCC como material de
reparo. / [en] The present work investigated the mechanical behavior of normal and highstrength
Strain Hardening Cementitious Composites (SHCC) reinforced with PVA,
UHMWPE (ultra-high molecular weight polyethylene), steel and hybrid fibers. For
the study, the total volume of fibers was kept constant at 2.0 percent in order to maintain
the workability of the composite system. PVA and polyethylene were partially
replaced by steel fibers in 0.5 percent and 1.0 percent. The mechanical response was measured
under direct tension tests, four-point bending tests on plates and three point-bending
tests on notched specimens. The crack pattern was investigated using high
resolution image capturing procedure. The size-effect of the composites reinforced
with PVA and polyethylene fibers was also investigated under direct tension test
and four-point bending tests using two sizes of specimens. The results have shown
that PVA fibers have a better performance than polyethylene fibers for normal
strength matrices and that for both normal and high strength matrices the partial
replacement of polyethylene and PVA fibers by steel fibers has the benefit of
increasing the strength, but it reduces the strain capacity of the composites. The
investigation about the size-effect also have shown that mechanical response of
these composites changes with the geometry of the specimens. Finally, the
composites were used as structural repair in beams subjected to previous damage
and the results verified the feasibility of SHCC as a repair material.
|
Page generated in 0.0513 seconds