• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

[pt] APLICAÇÃO DE TÉCNICAS DE REDES NEURAIS PARA A MELHORIA DA MODELAGEM DA TURBULÊNCIA, UTILIZANDO DADOS EXPERIMENTAIS / [en] APPLICATION OF NEURAL NETWORK TECHNIQUES TO ENHANCE TURBULENCE MODELING USING EXPERIMENTAL DATA

LEONARDO SOARES FERNANDES 12 March 2024 (has links)
[pt] Apesar dos recentes avanços tecnológicos e do surgimento de computadores extremamente rápidos, a simulação numérica direta de escoamentos turbulentos ainda é proibitivamente cara para a maioria das aplicações de engenharia e até mesmo para algumas aplicações de pesquisa. As simulações utilizadas são, no geral, baseadas em grandezas médias e altamente dependentes de modelos de turbulência. Apesar de amplamente utilizados, tais modelos não conseguem prever adequadamente o escoamento médio em muitas aplicações, como o escoamento em um duto quadrado. Com o reflorescimento do Aprendizado de Máquina nos últimos anos, muita atenção está sendo dada ao uso de tais técnicas para substituir os modelos tradicionais de turbulência. Este trabalho estudou o uso de Redes Neurais como alternativa para aprimorar a simulação de escoamentos turbulentos. Para isso, a técnica PIV-Estereoscópico foi aplicada ao escoamento em um duto quadrado para obter dados experimentais de estatísticas do escoamento e campos médios de velocidade de 10 casos com diferentes números de Reynolds. Um total de 10 metodologias foram avaliadas para entender quais grandezas devem ser previstas por um algoritmo de aprendizado de máquina para obter simulações aprimoradas. A partir das metodologias selecionadas, excelentes resultados foram obtidos com uma Rede Neural treinada a partir dos dados experimentais para prever o termo perpendicular do Tensor de Reynolds e a viscosidade turbulenta. As simulações turbulentas auxiliadas pela Rede Neural retornaram campos de velocidade com menos de 4 por cento de erro, em comparação os dados medidos. / [en] Although the technological advances that led to the development of fast computers, the direct numerical simulation of turbulent flows is still prohibitively expensive to most engineering and even some research applications. The CFD simulations used worldwide are, therefore, based on averaged quantities and heavily dependent on mathematical turbulence models. Despite widely used, such models fail to proper predict the averaged flow in many practical situations, such as the simple flow in a square duct. With the re-blossoming of machine learning methods in the past years, much attention is being given to the use of such techniques as a replacement to the traditional turbulence models. The present work evaluated the use of Neural Networks as an alternative to enhance the simulation of turbulent flows. To this end, the Stereoscopic-PIV technique was used to obtain well-converged flow statistics and velocity fields for the flow in a square duct for 10 values of Reynolds number. A total of 10 methodologies were evaluated in a data-driven approach to understand what quantities should be predicted by a Machine Learning technique that would result in enhanced simulations. From the selected methodologies, accurate results could be obtained with a Neural Network trained from the experimental data to predict the nonlinear part of the Reynolds Stress Tensor and the turbulent eddy viscosity. The turbulent simulations assisted by the Neural Network returned velocity fields with less than 4 percent in error, in comparison with those previously measured.
2

[en] FAST AND ACCURATE SIMULATION OF DEFORMABLE SOLID DYNAMICS ON COARSE MESHES / [pt] SIMULAÇÃO RÁPIDA E PRECISA DE DINÂMICA DE SÓLIDOS DEFORMÁVEIS EM MALHAS POUCO REFINADAS

MATHEUS KERBER VENTURELLI 23 May 2024 (has links)
[pt] Esta dissertação introduz um simulador híbrido inovador que combina um resolvedor de Equações Diferenciais Parciais (EDP) numérico de Elementos Finitos (FE) com uma Rede Neural de Passagem de Mensagens (MPNN) para realizar simulações de dinâmicas de sólidos deformáveis em malhas pouco refinadas. Nosso trabalho visa fornecer simulações precisas com um erro comparável ao obtido com malhas mais refinadas em discretizações FE,mantendo a eficiência computacional ao usar um componente MPNN que corrige os erros numéricos associados ao uso de uma malha menos refinada. Avaliamos nosso modelo focando na precisão, capacidade de generalização e velocidade computacional em comparação com um solucionador numérico de referência que usa malhas 64 vezes mais refinadas. Introduzimos um novo conjunto de dados para essa comparação, abrangendo três casos de referência numéricos: (i) deformação livre após um impulso inicial, (ii) alongamento e (iii)torção de sólidos deformáveis. Baseado nos resultados de simulação, o estudo discute as forças e fraquezas do nosso método. O estudo mostra que nosso método corrige em média 95,4 por cento do erro numérico associado à discretização, sendo até 88 vezes mais rápido que o solucionador de referência. Além disso, nosso modelo é totalmente diferenciável em relaçao a funções de custo e pode ser incorporado em uma camada de rede neural, permitindo que seja facilmente estendido por trabalhos futuros. Dados e código estão disponíveis em https://github.com/Kerber31/fast_coarse_FEM para investigações futuras. / [en] This thesis introduces a novel hybrid simulator that combines a numerical Finite Element (FE) Partial Differential Equation solver with a Message Passing Neural Network (MPNN) to perform simulations of deformable solid dynamics on coarse meshes. Our work aims to provide accurate simulations with an error comparable to that obtained with more refined meshes in FE discretizations while maintaining computational efficiency by using an MPNN component that corrects the numerical errors associated with using a coarse mesh. We evaluate our model focusing on accuracy, generalization capacity, and computational speed compared to a reference numerical solver that uses 64 times more refined meshes. We introduce a new dataset for this comparison, encompassing three numerical benchmark cases: (i) free deformation after an initial impulse, (ii) stretching, and (iii) torsion of deformable solids. Based on simulation results, the study thoroughly discusses our method s strengths and weaknesses. The study shows that our method corrects an average of 95.4 percent of the numerical error associated with discretization while being up to 88 times faster than the reference solver. On top of that, our model is fully differentiable in relation to loss functions and can be embedded into a neural network layer, allowing it to be easily extended by future work. Data and code are made available on https://github.com/Kerber31/fast_coarse_FEM for further investigations.

Page generated in 0.0523 seconds