• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

[en] MANY-CORE FRAGMENTATION SIMULATION / [pt] IMPLEMENTAÇÃO DE SIMULAÇÃO DE FRAGMENTAÇÃO EM ARQUITETURA DE MULTIPROCESSADORES

ANDREI ALHADEFF MONTEIRO 24 January 2017 (has links)
[pt] Apresentamos um método computacional na GPU que lida com eventos de fragmentação dinâmica, simulados por meio de elementos de zona coesiva. O trabalho é dividido em duas partes. Na primeira parte, tratamos o pré-processamento de informações e a verificação de corretude e eficácia da inserção dinâmica de elementos coesivos em malhas grandes. Para tal, apresentamos uma simples estrutura de dados topológica composta de triângulos. Na segunda parte, o código explícito de dinâmica é apresentado, que implementa a formulação extrínsica de zona coesiva, onde os elementos são inseridos dinamicamente quando e onde forem necessários. O principal desafio da implementação na GPU, usando a formulação de zona coesiva extrínsica, é ser capaz de adaptar dinamicamente a malha de uma forma consistente, inserindo elementos coesivos nas facetas fraturadas. Para isso, a estrutura de dados convencional usada no código de elementos finitos (baseado na incidência de elementos) é estendida, armazenando, para cada elemento, referências para elementos adjacentes. Para evitar concorrência ao acessar entidades compartilhadas, uma estratégia convencional de coloração de grafos é adotada. Na fase de pré-processamento, cada nó do grafo (elementos na malha) é associado a uma cor diferente das cores de seus nós adjacentes. Desta maneira, elementos da mesma cor podem ser processados em paralelo sem concorrência. Todos os procedimentos necessários para a inserção de elementos coesivos nas facetas fraturadas e para computar propriedades de nós são feitas por threads associados a triângulos, invocando um kernel por cor. Computações em elementos coesivos existentes também são feitas baseadas nos elementos adjacentes. / [en] A GPU-based computational framework is presented to deal with dynamic failure events simulated by means of cohesive zone elements. The work is divided into two parts. In the first part, we deal with pre-processing of the information and verify the effectiveness of dynamic insertion of cohesive elements in large meshes. To this effect, we employ a simplified topological data structured specialized for triangles. In the second part, we present an explicit dynamics code that implements an extrinsic cohesive zone formulation where the elements are inserted on-the-fly, when needed and where needed. The main challenge for implementing a GPU-based computational framework using extrinsic cohesive zone formulation resides on being able to dynamically adapt the mesh in a consistent way, inserting cohesive elements on fractured facets. In order to handle that, we extend the conventional data structure used in finite element code (based on element incidence) and store, for each element, references to the adjacent elements. To avoid concurrency on accessing shared entities, we employ the conventional strategy of graph coloring. In a pre-processing phase, each node of the dual graph (bulk element of the mesh) is assigned a color different to the colors assigned to adjacent nodes. In that way, elements of a same color can be processed in parallel without concurrency. All the procedures needed for the insertion of cohesive elements along fracture facets and for computing node properties are performed by threads assigned to triangles, invoking one kernel per color. Computations on existing cohesive elements are also performed based on adjacent bulk elements.
2

[pt] MAPEAMENTO DE SIMULAÇÃO DE FRATURA E FRAGMENTAÇÃO COESIVA PARA GPUS / [en] MAPPING COHESIVE FRACTURE AND FRAGMENTATION SIMULATIONS TO GPUS

ANDREI ALHADEFF MONTEIRO 11 February 2016 (has links)
[pt] Apresentamos um método computacional na GPU que lida com eventos de fragmentação dinâmica, simulados por meio de zona coesiva. Implementamos uma estrutura de dados topológica simples e especializada para malhas com triângulos ou tetraedros, projetada para rodar eficientemente e minimizar ocupação de memória na GPU. Apresentamos um código dinâmico paralelo, adaptativo e distribuído que implementa a formulação de modelo zona coesiva extrínsica (CZM), onde elementos são inseridos adaptativamente, onde e quando necessários. O principal objetivo na implementação deste framework computacional reside na habilidade de adaptar a malha de forma dinâmica e consistente, inserindo elementos coesivos nas facetas fraturadas e inserindo e removendo elementos e nós no caso da malha adaptativa. Apresentamos estratégias para refinar e simplificar a malha para lidar com simulações dinâmicas de malhas adaptativas na GPU. Utilizamos uma versão de escala reduzida do nosso modelo para demonstrar o impacto da variação de operações de ponto flutuante no padrão final de fratura. Uma nova estratégia de duplicar nós conhecidos como ghosts também é apresentado quando distribuindo a simulação em diversas partições de um cluster. Deste modo, resultados das simulações paralelas apresentam um ganho de desempenho ao adotar estratégias como distribuir trabalhos entre threads para o mesmo elemento e lançar vários threads por elemento. Para evitar concorrência ao acessar entidades compartilhadas, aplicamos a coloração de grafo para malhas não-adaptativas e percorrimento nodal no caso adaptativo. Experimentos demonstram que a eficiência da GPU aumenta com o número de nós e elementos da malha. / [en] A GPU-based computational framework is presented to deal with dynamic failure events simulated by means of cohesive zone elements. We employ a novel and simplified topological data structure relative to CPU implementation and specialized for meshes with triangles or tetrahedra, designed to run efficiently and minimize memory requirements on the GPU. We present a parallel, adaptive and distributed explicit dynamics code that implements an extrinsic cohesive zone formulation where the elements are inserted on-the-fly, when needed and where needed. The main challenge for implementing a GPU-based computational framework using an extrinsic cohesive zone formulation resides on being able to dynamically adapt the mesh, in a consistent way, by inserting cohesive elements on fractured facets and inserting or removing bulk elements and nodes in the adaptive mesh modification case. We present a strategy to refine and coarsen the mesh to handle dynamic mesh modification simulations on the GPU. We use a reduced scale version of the experimental specimen in the adaptive fracture simulations to demonstrate the impact of variation in floating point operations on the final fracture pattern. A novel strategy to duplicate ghost nodes when distributing the simulation in different compute nodes containing one GPU each is also presented. Results from parallel simulations show an increase in performance when adopting strategies such as distributing different jobs amongst threads for the same element and launching many threads per element. To avoid concurrency on accessing shared entities, we employ graph coloring for non-adaptive meshes and node traversal for the adaptive case. Experiments show that GPU efficiency increases with the number of nodes and bulk elements.

Page generated in 0.0265 seconds