• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

[pt] INFERÊNCIA DE TUNING ATRAVÉS DA ONDBTUNING / [en] TUNING INFERENCE THROUGH ONDBTUNING

LUCIANA DE SA SILVA PERCILIANO 11 April 2022 (has links)
[pt] OnDBTuning é uma ontologia de tuning (semi-automático) de banco de dados relacional. Ontologias são artefatos que representam o conhecimento de um domínio específico e podem ser usadas para se inferir conhecimentos. No entanto, em geral, a maioria das aplicações envolve apenas uma descrição formal e estática de conceitos. Além disso, como tuning de banco de dados envolve muitas regras baseadas na experiência e em algoritmos de caixa preta, torna-se um desafio descrever esse processo de inferência. Esse trabalho de pesquisa apresenta primeiramente a solução OnDBTuning que é uma ontologia no domínio de tuning. Em seguida, ele propõe uma implementação de regras em SPARQL Inferencing Notation (SPIN) na OnDBTuning. Por fim, mostra uma avaliação prática da solução para recomendação de índices e visões materializadas. / [en] OnDBTuning is a relational database (semi-automatic) tuning ontology. Ontologies are artifacts that represent specific domain knowledge and can be used to infer knowledge. However, in general, most applications include only a formal and static description of concepts. Moreover, as database tuning involves many rules-of-thumb and black-box algorithms, it becomes challenging to describe these inference procedures. This research work first presents the OnDBTuning ontology solution focusing on the inference of tuning actions. Next, it proposes an implementation of the OnDBtuning rules using SPARQL Inferencing Notation (SPIN). Finally, it shows a practical evaluation of our solution concerning index and materialized views recommendations.

Page generated in 0.0426 seconds