1 |
[en] A KEYWORD-BASED QUERY PROCESSING METHOD FOR DATASETS WITH SCHEMAS / [pt] MÉTODO PARA O PROCESSAMENTO DE CONSULTAS POR PALAVRAS-CHAVES PARA BASES DE DADOS COM ESQUEMASGRETTEL MONTEAGUDO GARCÍA 23 June 2020 (has links)
[pt] Usuários atualmente esperam consultar dados de maneira semelhante ao Google, digitando alguns termos, chamados palavras-chave, e deixando para o sistema recuperar os dados que melhor correspondem ao conjunto de palavras-chave. O cenário é bem diferente em sistemas de gerenciamento de banco de dados em que os usuários precisam conhecer linguagens de consulta sofisticadas para recuperar dados, ou em aplicações de banco de dados em que as interfaces de usuário são projetadas como inúmeras caixas que o usuário deve preencher com seus parâmetros de pesquisa. Esta tese descreve um algoritmo e um framework projetados para processar consultas baseadas em palavras-chave para bases de dados com esquema, especificamente bancos relacionais e bases de dados em RDF. O algoritmo primeiro converte uma consulta baseada em palavras-chave em uma consulta abstrata e, em seguida, compila a consulta abstrata em uma consulta SPARQL ou SQL, de modo que cada resultado da consulta SPARQL (resp. SQL)
seja uma resposta para a consulta baseada em palavras-chave. O algoritmo explora o esquema para evitar a intervenção do usuário durante o processo de busca e oferece um mecanismo de feedback para gerar novas respostas. A tese termina com experimentos nas bases de dados Mondial, IMDb e Musicbrainz. O algoritmo proposto obtém resultados satisfatórios para os benchmarks. Como parte dos experimentos, a tese também compara os resultados e o desempenho obtidos com bases de dados em RDF e bancos de dados relacionais. / [en] Users currently expect to query data in a Google-like style, by simply typing some terms, called keywords, and leaving it to the system to retrieve the data that best match the set of keywords. The scenario is quite different in database management systems, where users need to know sophisticated query languages to retrieve data, and in database applications, where the user interfaces are designed as a stack of pages with numerous boxes that the user must fill with his search parameters. This thesis describes an algorithm and a framework designed to support keywordbased queries for datasets with schema, specifically RDF datasets and relational databases. The algorithm first translates a keyword-based query into an abstract
query, and then compiles the abstract query into a SPARQL or a SQL query such that each result of the SPARQL (resp. SQL) query is an answer for the keywordbased query. It explores the schema to avoid user intervention during the translation process and offers a feedback mechanism to generate new answers. The thesis concludes with experiments over the Mondial, IMDb, and Musicbrainz databases. The proposed translation algorithm achieves satisfactory results and good performance for the benchmarks. The experiments also compare the RDF and the relational alternatives.
|
2 |
[en] A NOVEL SOLUTION TO EMPOWER NATURAL LANGUAGE INTERFACES TO DATABASES (NLIDB) TO HANDLE AGGREGATIONS / [pt] UMA NOVA SOLUÇÃO PARA CAPACITAR INTERFACES DE LINGUAGEM NATURAL PARA BANCOS DE DADOS (NLIDB) PARA LIDAR COM AGREGAÇÕESALEXANDRE FERREIRA NOVELLO 19 July 2021 (has links)
[pt] Perguntas e Respostas (Question Answering - QA) é um campo de estudo dedicado à construção de sistemas que respondem automaticamente a perguntas feitas em linguagem natural. A tradução de uma pergunta feita em linguagem natural em uma consulta estruturada (SQL ou SPARQL) em um banco de dados também é conhecida como Interface de Linguagem Natural para Bancos de Dados (Natural Language Interface to Database - NLIDB). Os sistemas NLIDB geralmente não lidam com agregações, que podem ter os seguintes elementos: funções de agregação (como contagem, soma, média, mínimo e máximo), uma cláusula de agrupamento (GROUP BY) e uma cláusula HAVING. No entanto, eles fornecem bons resultados para consultas normais. Esta dissertação aborda a criação de um módulo genérico, para ser utilizado em sistemas NLIDB, que permite a tais sistemas realizar consultas com agregações, desde que os resultados da consulta que o NLIDB retorna sejam, ou possam ser transformados, em um resultado no formato tabular. O trabalho cobre agregações com especificidades como ambiguidades, diferenças de escala de tempo, agregações em atributos múltiplos, o uso de adjetivos superlativos, reconhecimento básico de unidade de medida, agregações em atributos com nomes compostos e subconsultas com funções de agregação aninhadas em até dois níveis. / [en] Question Answering (QA) is a field of study dedicated to building systems that automatically answer questions asked in natural language. The translation of a question asked in natural language into a structured query (SQL or SPARQL) in a database is also known as Natural Language Interface to Database (NLIDB). NLIDB systems usually do not deal with aggregations, which can have the following elements: aggregation functions (as count, sum, average, minimum and maximum), a grouping clause (GROUP BY) and a having clause (HAVING). However, they deliver good results for normal queries. This dissertation addresses the creation of a generic module, to be used in NLIDB systems, that allows such systems to perform queries with aggregations, on the condition that the query results the NLIDB return are, or can be transformed into, a result set in the form of a table. The work covers aggregations with specificities such as ambiguities, timescale differences, aggregations in multiple attributes, the use of superlative adjectives, basic unit measure recognition, aggregations in attributes with compound names and subqueries with aggregation functions nested up to two levels.
|
Page generated in 0.0474 seconds