1 |
[en] MODELING NONLINEAR TIME SERIES WITH A TREE-STRUCTURED MIXTURE OF GAUSSIAN MODELS / [pt] MODELANDO SÉRIES TEMPORAIS NÃO-LINEARES ATRAVÉS DE UMA MISTURA DE MODELOS GAUSSIANOS ESTRUTURADOS EM ÁRVOREEDUARDO FONSECA MENDES 20 March 2007 (has links)
[pt] Neste trabalho um novo modelo de mistura de distribuições
é proposto, onde a estrutura da mistura é determinada por
uma árvore de decisão com transição suave. Modelos
baseados em mistura de distribuições são úteis para
aproximar distribuições condicionais desconhecidas de
dados multivariados. A estrutura em árvore leva a um
modelo que é mais simples, e em alguns casos mais
interpretável, do que os propostos anteriormente na
literatura. Baseando-se no algoritmo de Esperança-
Maximização (EM), foi derivado um estimador de quasi-
máxima verossimilhança. Além disso, suas propriedades
assintóticas são derivadas sob condições de
regularidades. Uma estratégia de crescimento da árvore,
do especifico para o geral, é também proposta para evitar
possíveis problemas de identificação. Tanto a estimação
quanto a estratégia de crescimento são avaliados em um
experimento Monte Carlo, mostrando que a teoria ainda
funciona para pequenas amostras. A habilidade de
aproximação universal é ainda analisada em experimentos
de simulação. Para concluir, duas aplicações com bases de
dados reais são apresentadas. / [en] In this work a new model of mixture of distributions is
proposed, where the mixing structure is determined by a
smooth transition tree architecture. Models based on
mixture of distributions are useful in order to approximate
unknown conditional distributions of multivariate data. The
tree structure yields a model that is simpler, and in some
cases more interpretable, than previous proposals in the
literature. Based on the Expectation-Maximization (EM)
algorithm a quasi-maximum likelihood estimator is derived
and its asymptotic properties are derived under mild
regularity conditions. In addition, a specific-to-general
model building strategy is proposed in order to avoid
possible identification problems. Both the estimation
procedure and the model building strategy are evaluated in
a Monte Carlo experiment, which give strong support for the
theorydeveloped in small samples. The approximation
capabilities of the model is also analyzed in a simulation
experiment. Finally, two applications with real datasets
are considered.
|
2 |
[pt] MODELOS COM MÚLTIPLOS REGIMES PARA SÉRIES TEMPORAIS: LIMIARES, TRANSIÇÕES SUAVES E REDES NEURAIS / [en] REGIME-SWITCHING MODELS: THRESHOLDS, SMOOTH TRANSITIONS, AND NEURAL NETWORKSMARCELO CUNHA MEDEIROS 30 November 2005 (has links)
[pt] O objetivo desta tese é apresentar modelos mais flexíveis
com troca de regimes, combinando as idéias provenientes
dos modelos com limiar, com transição suave e redes
neurais. Os modelos aqui discutidos possuem múltiplos
regimes e a transição entre eles é controlada por uma
combinação linear de variáveis conhecidas. Um procedimento
de modelagem, baseada no trabalho de Teräsvirta e Lin
(1993), Eiterheim e Teräsvirta (1996), e Rech, Teräsvirta
e Tschernig (1999), consistindo das etapas de
especificação, estimação e avaliação, foi desenvolvido,
desta forma possibilitando ao analista de séries temporais
escolher entre diferentes alternativas durante o processo
de modelagem. / [en] The goal of this thesis is to propose more flexible
regime-switching models combining
the ideas from the SETAR, STAR, and ANN specifications.
The models discussed in this
thesis are models with multi-regimes and with the
transition between regimes controlled by
a linear combination of known variables. A modelling
cycle procedure, based on the work
of Teräsvirta and Lin (1993), Eitrheim and Teräsvirta
(1996), and Rech, Teräsvirta and
Tschernig (1999), consisting of the stages of model
specification, parameter estimation,
and model evaluation, is developed allowing the
practitioner to choose among different
alternatives during the modelling cycle. Monte-Carlo
simulations and real applications
are used to evaluate the performance of the techniques
developed here and they suggested
that the theory is useful and the proposed models thus
seems to be an effective tool for
the practicing time series analysts.
|
3 |
[en] ASYMMETRIC EFFECTS AND LONG MEMORY IN THE VOLATILITY OF DJIA STOCKS / [pt] EFEITOS DE ASSIMETRIA E MEMÓRIA LONGA NA VOLATILIDADE DE AÇÕES DO ÍNDICE DOW JONESMARCEL SCHARTH FIGUEIREDO PINTO 16 October 2006 (has links)
[pt] volatilidade dos ativos financeiros reflete uma reação
prosseguida dos agentes a choques no passado ou alterações
nas condições dos mercados determinam mudanças na dinâmica
da variável? Enquanto modelos fracionalmente integrados
vêm sendo extensamente utilizados como uma descrição
adequada do processo gerador de séries de volatilidade,
trabalhos teóricos recentes indicaram que mudanças
estruturais podem ser uma relevante alternativa empírica
para o fato estilizado de memória longa. O presente
trabalho investiga o que alterações nos mercados
significam nesse contexto, introduzindo variações de
preços como uma possível fonte de mudanças no nível da
volatilidade durante algum período, com grandes quedas
(ascensões) nos preços trazendo regimes persistentes de
variância alta (baixa). Uma estratégia de modelagem
sistemática e flexível é estabelecida para testar e
estimar essa assimetria através da incorporação de
retornos acumulados passados num arcabouço não-linear. O
principal resultado revela que o efeito é altamente
significante - estima-se que níveis de volatilidade 25% e
50% maiores estão associados a quedas nos preços em
períodos curtos - e é capaz de explicar altos valores de
estimativas do parâmetro de memória longa. Finalmente,
mostra-se que a modelagem desse efeito traz ganhos
importantes para aplicações fora da amostra em períodos de
volatilidade alta. / [en] Does volatility reflect lasting reactions to past shocks
or changes in the
markets induce shifts in this variable dynamics? In this
work, we argue
that price variations are an essential source of
information about multiple
regimes in the realized volatility of stocks, with large
falls (rises) in prices
bringing persistent regimes of high (low) variance. The
study shows that
this asymmetric effect is highly significant (we estimate
that falls of different
magnitudes over less than two months are associated with
volatility levels
20% and 60% higher than the average of periods with stable
or rising prices)
and support large empirical values of long memory
parameter estimates.
We show that a model based on those findings significantly
improves out of
sample performance in relation to standard methods
{specially in periods
of high volatility.
|
Page generated in 0.0515 seconds