1 |
[en] THERMODYNAMIC AND ENVIRONMENTAL ANALYSIS OF TRIGENERATION SYSTEMS BASED ON SYSTEM STRUCTURE AND ENERGY LOADS / [pt] ANÁLISE TERMODINÂMICA E AMBIENTAL DE SISTEMAS DE TRIGERAÇÃO EM FUNÇÃO DE SUA ARQUITETURA E DAS DEMANDAS ENERGÉTICASVICTOR HUGO MARTINS MATOS SILVA 04 October 2017 (has links)
[pt] O presente trabalho tem por objetivo analisar e comparar sistemas de trigeração (produção simultânea de eletricidade, aquecimento e refrigeração) de diferentes arquiteturas com base nas eficiências energética e exergética e nas emissões de CO2. Sistemas de trigeração são considerados mais eficientes na conversão de energia, se comparados a sistemas convencionais, devido ao reaproveitamento do calor de rejeito do motor térmico para outros fins (aquecimento, acionamento de chiller, ou geração de eletricidade). Quatro configurações (com chiller de compressão de vapor, com chiller de absorção, com a combinação dos ciclos anteriores, e combinado com um ciclo Rankine orgânico) foram estudadas a partir de modelos matemáticos resultantes dos balanços de energia e de exergia, e do cálculo de emissão de CO2 considerando as demandas energéticas (eletricidade, aquecimento e refrigeração) como independentes do desempenho do sistema. Todas as arquiteturas de trigeração aqui analisadas apresentaram um ponto ótimo de operação, onde o calor de rejeito recuperado para aquecimento se iguala à respectiva demanda. Neste ponto, o fator de utilização de energia (indicador de desempenho pela primeira Lei) e a eficiência exergética são máximos, e a emissão de CO2, mínima. A solução das equações resultantes mostrou também que a melhor arquitetura, do ponto de vista energético, exergético ou ambiental, dependerá da combinação das demandas energéticas. / [en] The present work aims at analyzing and comparing trigeneration systems (for the simultaneous production of electricity, heating and refrigeration) of different architectures based on energetic and exergetic efficiencies and on CO2 emissions. Trigeneration systems are regarded as more efficient in energy conversion, if compared to conventional systems, due to the recovery of waste heat from the heat engine. The waste heat is used for different purposes, including heating, chiller driving or electricity generation. Four trigeneration configurations (with vapor compression chiller, absorption chiller, with a combination of the two previous cycles, or combined with an organic Rankine cycle) were studied. Mathematical models resulting from the energy and exergy balances and from the calculation of CO2 emissions were developed taking into account that the three energy demands (electricity, heating and refrigeration) are independent from the trigeneration system performance. Solution of the resulting equations indicated an optimal point of operation, for all trigeneration architectures under study, where the waste heat recovered for heating equals the heating demand. At this point, the energy utilization factor (first Law indicator) and the exergy efficiency reach their maximum value, and the CO2 emissions, its lowest. Another important finding is that the configuration with best performance, from the energetic, exergetic, or environmental point of view, will depend on how the energy demands relate to each other.
|
2 |
[en] ANALYSIS OF A SYSTEM FOR THE SIMULTANEOUS PRODUCTION OF ELECTRICAL ENERGY, HEAT AND COLD / [pt] ANÁLISE DE UM SISTEMA DE PRODUÇÃO SIMULTÂNEA DE ELETRICIDADE, FRIO E CALORFRANK CHAVIANO PRUZAESKY 23 March 2006 (has links)
[pt] A produção simultânea de energia elétrica, calor e frio, a
partir da
queima de combustível primário (trigeração), pode se
mostrar como
estratégia promissora do ponto de vista energético e de
projeto,
principalmente em indústrias como a química e a de
alimentos. No
presente trabalho descreve-se o estudo experimental de um
sistema de
produção de água gelada (chiller) com compressor hermético
acionado
eletricamente. Um motor a combustão interna, do tipo
Diesel, foi
convertido para operar com gás natural veicular (Diesel-
gás) e aciona um
gerador de eletricidade que supre a energia elétrica
necessária ao
funcionamento do chiller e ao atendimento de demanda
elétrica préestabelecida.
O resultante sistema de trigeração é, portanto, composto
por dois sub-sistemas: a bomba de calor (chiller) e o
conjunto motorgerador.
Calor de rejeito, do condensador do chiller e do sistema de
arrefecimento e gases de exaustão do motor, é recuperado
para a
produção de água quente. O sistema é analisado à luz da 1ª
e 2ª leis da
Termodinâmica. As razões entre as demandas de frio, calor
e eletricidade,
as temperaturas de evaporação e de condensação da bomba de
calor, e
a razão de substituição de óleo Diesel por gás natural
veicular são os
principais parâmetros de controle dos resultados
apresentados.
Determinou-se, para o sistema em questão, uma taxa de
substituição
energética ótima do óleo Diesel por GNV de aproximadamente
25%, com
uma economia de 11% a 15% (para geração de potência
elétrica acima
de 4,0 kW), fundamentada na diferença de preços entre os
dois
combustíveis e numa melhora do rendimento do motor para
estas condições de operação. Obteve-se a contribuição
percentual de cada um
dos produtos energéticos (frio, calor e eletricidade), em
função do
consumo de combustível, para as diferentes potências
testadas, em
função da taxa de substituição energética do óleo Diesel
por GNV.
Determinou-se, experimentalmente, a vazão de água nos
diferentes
componentes, para a qual se obtém uma máxima eficiência do
sistema,
quando analisado do ponto de vista exergético. / [en] The simultaneous production of electric energy, heat and
cooling
capacity from the primary fuel burning on a heat engine
(trigeneration) can
emerge as a promising strategy, from the energy and
project points of
view, mostly, in food and chemistry industries. The
present work describes
the experimental study of a vapor compression system for
chilled water
production. A Diesel internal combustion engine was
converted to operate
with natural gas (Diesel-gas) and drives an electric
generator that supplies
the necessary electric energy for the chiller`s
functioning and to attend the
pre-established electric demand. The resultant system of
trigeneration is,
therefore, composed of two subsystems: the heat pump
(chiller) and the
engine-generator group. Heat rejected from the condenser
of chiller and
from the cooling system and exhaust gases of the engine,
is recovered for
hot water production. The system is analyzed under the
light of first and
second laws of the Thermodynamics. The ratio between the
cooling,
heating and electricity demands, the temperatures of
evaporation and
condensation of the heat pump, and the Diesel-natural gas
substitution
ratio are main parameters of control of the presented
results. The
percentile contribution of cold, heat and electricity (on
energetic fuel
consumption basis), for the different electric energy
generation rates, was
obtained as a function of the energy substitution rate of
the Diesel oil for
natural gas. An optimal energy substitution rate of Diesel
oil for natural gas
of approximately 25% was determined with an economy rated
between
11% and 15% (for electric energy generation rates above
4,0 kW), based
both on the difference between prices of the two fuels and
on the engine`s performance improvement for these
operational conditions. An optimum
water flow rate, from the exergetic point of view, was
found for each
component.
|
Page generated in 0.0285 seconds